[en] OBJECTIVE: Heterozygous germline loss-of-function variants in AIP are associated with young-onset growth hormone and/or prolactin-secreting pituitary tumours. However, the pathogenic role of the c.911G>A; p.(Arg304Gln) (R304Q) AIP variant has been controversial. Recent data from public exome/genome databases show this variant is not infrequent. The objective of this work was to reassess the pathogenicity of R304Q based on clinical, genomic and functional assay data.
DESIGN, MATERIALS AND METHODS: Data were collected on published R304Q pituitary neuroendocrine tumour cases, and from International Familial Isolated Pituitary Adenoma Consortium R304Q cases (n=38, R304Q cohort). Clinical features, population cohort frequency, computational analyses, prediction models, presence of loss-of-heterozygosity and in vitro/in vivo functional studies were assessed and compared to data from pathogenic/likely pathogenic AIP variant patients (AIPmut cohort, n=184).
RESULTS: Of 38 R304Q patients, 61% (23/38) had growth hormone excess, in contrast to 80% of AIPmut cohort (147/184, p<0.001). R304Q cohort was older at disease onset and diagnosis than the AIPmut cohort (median (quartiles) onset: 25y (16-35) vs 16y (14-23), p<0.001; median (quartiles) diagnosis: 36y (24-44) vs 21y (15-29), p<0.001). R304Q is present in gnomADv2.1 (0.31%) and UK Biobank (0.16%), including three persons with homozygous R304Q. No loss-of-heterozygosity was detected in four R304Q pituitary neuroendocrine tumour samples. In silico predictions and experimental data were conflicting.
CONCLUSIONS: Evidence suggests that R304Q is not pathogenic for pituitary neuroendocrine tumour. We recommend changing this variant classification to likely benign, and do not recommend pre-symptomatic genetic testing of family members or follow up of already identified unaffected individuals with the R304Q variant.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Loughrey, Paul Benjamin ; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK ; Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
Mothojakan, Nadira B; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Iacovazzo, Donato; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Arni, Ankit; Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
Aflorei, Elena D; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Arnaldi, Giorgio; Section of Endocrinology, PROMISE, University of Palermo, Palermo, Italy ; Unità Operativa Complessa of Endocrine Diseases. A.O.U.P. Paolo Giaccone of Palermo, Italy
Barlier, Anne; Aix Marseille Univ APHM, INSERM, UMR1251 MMG, Laboratory of Molecular Biology GEnOPé, Biogénopôle, Hôpital de la Timone, Marseille, France
Beckers, Albert ; Université de Liège - ULiège > Département des sciences cliniques
Bizzi, Mariana F; Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte/Minas Gerais, Brazil
Chanson, Philippe; Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Le Kremlin-Bicêtre, France
Dal, Jakob; Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
Daly, Adrian ; Université de Liège - ULiège > Département des sciences cliniques
Dang, Mary N; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
David, Alessia; Centre for Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
de Oliveira Andrade, Matheus; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK ; University of Brasilia, Faculty of Medicine, Brasilia, Brazil
Else, Tobias ; MEND/Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, US
Elston, Marianne S ; Waikato Clinical Campus, The University of Auckland, Hamilton, New Zealand
Evans, Amy; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Ferrau, Francesco; Department of Human Pathology of Adulthood and Childhood 'G. Barresi', University of Messina, Messina, Italy
Fica, Simona; Endocrinology and Diabetes Department, Elias Hospital, University of Medicine and Pharmacy Carol Davila Bucharest, Bucharest, Romania
Flanagan, Daniel; Department of Endocrinology, University Hospitals Plymouth NHS Trust, Plymouth, UK
Gadelha, Monica R; Endocrinology Unit, Department of Internal Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Grossman, Ashley B ; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Kapur, Sonal ; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Khoo, Bernard; Division of Medicine, University College London, Royal Free Campus, London, UK
Kumar, Ajith V; North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
Kumar-Sinha, Chandan ; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, US
Lechan, Ronald M; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, USA
Ludman, Mark; Institute of Genetics, Meir Medical Center, Kfar Saba, Israel
Metherell, Louise A ; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Miljic, Dragana; Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, and Faculty of Medicine, University of Belgrade, Belgrade, Serbia
Mourougavelou, Vishnou; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Musat, Madalina; National Institute of Endocrinology, University of Medicine and Pharmacy Carol Davila Bucharest, Bucharest, Romania
Occhi, Gianluca ; Department of Biology, University of Padua, Padua, Italy
Owens, Martina; Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
Pascanu, Ionela; Department of Endocrinology, George Emil Palade University of Medicine Pharmacy Science and Technology of Targu Mures, Targu Mures, Romania
Pinheiro, Sergio V B; Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte/Minas Gerais, Brazil
Radian, Serban; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Ribeiro-Oliveira, Antonio; Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte/Minas Gerais, Brazil
Schöfl, Christof; Center of Endocrinology and Metabolism, Bamberg and Erlangen, Obstmarkt 1 96047 Bamberg, Germany
Patel, Kashyap A ; Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
Hernández-Ramírez, Laura C; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK ; Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
Korbonits, Márta; Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, UK
Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev. 2013;34(2):239-277. https://doi.org/10.1210/er.2012-1013
Daly AF, Tichomirowa MA, Petrossians P, et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab. 2010;95(11):E373-E383. https://doi.org/10.1210/jc.2009-2556
Marques P, Caimari F, Hernandez-Ramirez LC, et al. Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors. J Clin Endocrinol Metab. 2020;105(6):e2247-e2260. https://doi.org/10.1210/clinem/ dgaa040
Hernandez-Ramirez LC, Gabrovska P, Denes J, et al. Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. J Clin Endocrinol Metab. 2015;100(9):E1242-E1254. https://doi.org/10.1210/jc.2015-1869
Hernández-Ramírez LC. The role of the aryl hydrocarbon receptor interacting protein in pituitary tumorigenesis. In: Stratakis CA, ed. Gigantism and Acromegaly: Academic Press; 2021:89-126.
Guaraldi F, Corazzini V, Gallia GL, et al. Genetic analysis in a patient presenting with meningioma and familial isolated pituitary adenoma (FIPA) reveals selective involvement of the R81X mutation of the AIP gene in the pathogenesis of the pituitary tumor. Pituitary. 2012;15 Suppl 1(S1):S61-S67. https://doi.org/10.1007/ s11102-012-0391-y
Morgan RM, Hernandez-Ramirez LC, Trivellin G, et al. Structure of the TPR domain of AIP: lack of client protein interaction with the C-terminal alpha-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition. PLoS One. 2012;7(12): e53339. https://doi.org/10.1371/journal.pone.0053339
Hernandez-Ramirez LC, Martucci F, Morgan RM, et al. Rapid proteasomal degradation of mutant proteins is the primary mechanism leading to tumorigenesis in patients with missense AIP mutations. J Clin Endocrinol Metab. 2016;101(8):3144-3154. https://doi.org/10.1210/jc.2016-1307
Haworth O, Korbonits M. AIP: a double agent? The tissue-specific role of AIP as a tumour suppressor or as an oncogene. Br J Cancer. 2022;127(7):1175-1176. https://doi.org/10.1038/s41416-022-01964-7
Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312(5777):1228-1230. https://doi.org/10.1126/science.1126100
Radian S, Diekmann Y, Gabrovska P, et al. Increased population risk of AIP-related acromegaly and gigantism in Ireland. Hum Mutat. 2017;38(1):78-85. https://doi.org/10.1002/humu.23121
Occhi G, Jaffrain-Rea ML, Trivellin G, et al. The R304X mutation of the aryl hydrocarbon receptor interacting protein gene in familial isolated pituitary adenomas: mutational hot-spot or founder effect? J Endocrinol Invest. 2010;33(11):800-805. https://doi.org/10.1007/BF03350345
Chahal HS, Stals K, Unterlander M, et al. AIP mutation in pituitary adenomas in the 18th century and today. N Engl J Med. 2011;364(1):43-50. https://doi.org/10.1056/NEJMoa1008020
Georgitsi M, Raitila A, Karhu A, et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc Natl Acad Sci U S A. 2007;104(10):4101-4105. https://doi.org/10.1073/pnas. 0700004104
Leontiou CA, Gueorguiev M, van der Spuy J, et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab. 2008;93(6):2390-2401. https://doi.org/10.1210/jc.2007-2611
Vargiolu M, Fusco D, Kurelac I, et al. The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. J Clin Endocrinol Metab. 2009;94(7):2571-2578. https://doi.org/10.1210/jc.2008-1980
Igreja S, Chahal HS, King P, et al. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum Mutat. 2010;31(8): 950-960. https://doi.org/10.1002/humu.21292
Tichomirowa MA, Barlier A, Daly AF, et al. High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas. Eur J Endocrinol. 2011;165(4): 509-515. https://doi.org/10.1530/EJE-11-0304
Cazabat L, Bouligand J, Salenave S, et al. Germline AIP mutations in apparently sporadic pituitary adenomas: prevalence in a prospective single-center cohort of 443 patients. J Clin Endocrinol Metab. 2012;97(4):E663-E670. https://doi.org/10.1210/jc.2011-2291
Cuny T, Pertuit M, Sahnoun-Fathallah M, et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don’t forget MEN1 genetic analysis. Eur J Endocrinol. 2013;168(4):533-541. https://doi.org/10.1530/EJE-12-0763
Preda V, Korbonits M, Cudlip S, Karavitaki N, Grossman AB. Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol. 2014;171(5):659-666. https://doi.org/10.1530/EJE-14-0426
Schofl C, Honegger J, Droste M, et al. Frequency of AIP gene mutations in young patients with acromegaly: a registry-based study. J Clin Endocrinol Metab. 2014;99(12):E2789-E2793. https://doi.org/10.1210/jc.2014-2094
Araujo PB, Kasuki L, de Azeredo Lima CH, et al. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation. Endocr Connect. 2017;6(8):914-925. https://doi.org/10.1530/EC-17-0237
Cannavo S, Ragonese M, Puglisi S, et al. Acromegaly is more severe in patients with AHR or AIP gene variants living in highly polluted areas. J Clin Endocrinol Metab. 2016;101(4):1872-1879. https://doi.org/10.1210/jc.2015-4191
Tuncer FN, Ciftci Dogansen S, Serbest E, et al. Screening of AIP gene variations in a cohort of Turkish patients with young-onset sporadic hormone-secreting pituitary adenomas. Genet Test Mol Biomarkers. 2018;22(12):702-708. https://doi.org/10.1089/gtmb.2018.0133
Dal J, Nielsen EH, Klose M, et al. Phenotypic and genotypic features of a large kindred with a germline AIP variant. Clin Endocrinol (Oxf). 2020;93(2):146-153. https://doi.org/10.1111/cen.14207
Chen S, Francioli LC, Goodrich JK, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024;625(7993):92-100. https://doi.org/10.1038/s41586-023-06045-0
Lin BC, Sullivan R, Lee Y, Moran S, Glover E, Bradfield CA. Deletion of the aryl hydrocarbon receptor-associated protein 9 leads to cardiac malformation and embryonic lethality. J Biol Chem. 2007;282(49):35924-35932. https://doi.org/10.1074/jbc. M705471200
Aflorei ED, Klapholz B, Chen C, et al. In vivo bioassay to test the pathogenicity of missense human AIP variants. J Med Genet. 2018;55(8):522-529. https://doi.org/10.1136/jmedgenet-2017-105191
Chen B, Liu P, Hujber EJ, Li Y, Jorgensen EM, Wang ZW. AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor. Nat Commun. 2017;8(1):1380. https://doi.org/10.1038/s41467-017-01704-z
Hernandez-Ramirez LC, Morgan RML, Barry S, D’Acquisto F, Prodromou C, Korbonits M. Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland. Oncotarget. 2018;9(10): 9177-9198. https://doi.org/10.18632/oncotarget.24183
Bizzi MF, Pinheiro SVB, Bolger GB, et al. Reduced protein expression of the phosphodiesterases PDE4A4 and PDE4A8 in AIP mutation positive somatotroph adenomas. Mol Cell Endocrinol. 2018;476:103-109. https://doi.org/10.1016/j.mce.2018.04.014
Newey PJ, Berg JN, Zhou K, Palmer CNA, Thakker RV. Utility of population-level DNA sequence data in the diagnosis of hereditary endocrine disease. J Endocr Soc. 2017;1(12):1507-1526. https://doi.org/10.1210/js.2017-00330
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405-424. https://doi.org/10.1038/gim.2015.30
Walsh N, Cooper A, Dockery A, O’Byrne JJ. Variant reclassification and clinical implications. J Med Genet. 2024;61(3):207-211. https://doi.org/10.1136/jmg-2023-109488
Macklin S, Durand N, Atwal P, Hines S. Observed frequency and challenges of variant reclassification in a hereditary cancer clinic. Genet Med. 2018;20(3):346-350. https://doi.org/10.1038/gim.2017.207
Robinson DR, Wu YM, Lonigro RJ, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548(7667):297-303. https://doi.org/10.1038/nature23306
Backman JD, Li AH, Marcketta A, et al. Exome sequencing and analysis of 454,787 UK biobank participants. Nature. 2021;599(7886):628-634. https://doi.org/10.1038/s41586-021-04103-z
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-589. https://doi.org/10.1038/s41586-021-03819-2
David A, Islam S, Tankhilevich E, Sternberg MJE. The AlphaFold database of protein structures: a Biologist’s guide. J Mol Biol. 2022;434(2):167336. https://doi.org/10.1016/j.jmb.2021.167336
Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol. 2019;431(11):2197-2212. https://doi.org/10.1016/j.jmb.2019.04.009
Linnert M, Haupt K, Lin YJ, et al. NMR assignments of the FKBP-type PPIase domain of the human aryl-hydrocarbon receptor-interacting protein (AIP). Biomol NMR Assign. 2012;6(2): 209-212. https://doi.org/10.1007/s12104-012-9359-0
Frazer J, Notin P, Dias M, et al. Disease variant prediction with deep generative models of evolutionary data. Nature. 2021;599(7883): 91-95. https://doi.org/10.1038/s41586-021-04043-8
Cheng J, Novati G, Pan J, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science. 2023;381(6664):eadg7492. https://doi.org/10.1126/science.adg7492
Bolger GB, Bizzi MF, Pinheiro SV, et al. cAMP-specific PDE4 phosphodiesterases and AIP in the pathogenesis of pituitary tumors. Endocr Relat Cancer. 2016;23(5):419-431. https://doi.org/10.1530/ERC-15-0205
Garcia-Rendueles AR, Chenlo M, Oroz-Gonjar F, et al. RET signal-ling provides tumorigenic mechanism and tissue specificity for AIP-related somatotrophinomas. Oncogene. 2021;40(45): 6354-6368. https://doi.org/10.1038/s41388-021-02009-8
Barry S, Carlsen E, Marques P, et al. Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene. 2019;38(27):5381-5395. https://doi.org/10.1038/s41388-019-0779-5
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
Pardi E, Marcocci C, Borsari S, et al. Aryl hydrocarbon receptor interacting protein (AIP) mutations occur rarely in sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2013;98(7):2800-2810. https://doi.org/10.1210/jc.2012-4029
Raitila A, Georgitsi M, Karhu A, et al. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia. Endocr Relat Cancer. 2007;14(3):901-906. https://doi.org/10.1677/ERC-07-0025
Georgitsi M, Karhu A, Winqvist R, et al. Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers. Br J Cancer. 2007;96(2):352-356. https://doi.org/10.1038/sj.bjc.6603573
Raitila A, Georgitsi M, Bonora E, et al. Aryl hydrocarbon receptor interacting protein mutations seem not to associate with familial non-medullary thyroid cancer. J Endocrinol Invest. 2009;32(5): 426-429. https://doi.org/10.1007/BF03346480
Pollenz RS, Dougherty EJ. Redefining the role of the endogenous XAP2 and C-terminal hsp70-interacting protein on the endogenous ah receptors expressed in mouse and rat cell lines. J Biol Chem. 2005;280(39):33346-33356. https://doi.org/10.1074/jbc.M506619200
Williams F, Hunter S, Bradley L, et al. Clinical experience in the screening and management of a large kindred with familial isolated pituitary adenoma due to an aryl hydrocarbon receptor interacting protein (AIP) mutation. J Clin Endocrinol Metab. 2014;99(4): 1122-1131. https://doi.org/10.1210/jc.2013-2868
Trivellin G, Daly AF, Faucz FR, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371(25):2363-2374. https://doi.org/10.1056/ NEJMoa1408028
Gordon RJ, Bell J, Chung WK, David R, Oberfield SE, Wardlaw SL. Childhood acromegaly due to X-linked acrogigantism: long term follow-up. Pituitary. 2016;19(6):560-564. https://doi.org/10.1007/s11102-016-0743-0
Baciu I, Radian S, Capatina C, et al. The P.R16H (C.47G > A) AIP gene variant in a case with invasive non-functioning pituitary macroadenoma and screening of a control cohort. Acta Endocrinologica. 2013;9(1):97-108. https://doi.org/10.4183/aeb.2013.97
Dinesen PT, Dal J, Gabrovska P, et al. An unusual case of an ACTH-secreting macroadenoma with a germline variant in the aryl hydrocarbon receptor-interacting protein (AIP) gene. Endocrinol Diabetes Metab Case Rep. 2015;2015:140105. https://doi.org/10.1530/EDM-14-0105
Buchbinder S, Bierhaus A, Zorn M, Nawroth PP, Humpert P, Schilling T. Aryl hydrocarbon receptor interacting protein gene (AIP) mutations are rare in patients with hormone secreting or non-secreting pituitary adenomas. Exp Clin Endocrinol Diabetes. 2008;116(10):625-628. https://doi.org/10.1055/s-2008-1065366
Daly AF, Vanbellinghen JF, Khoo SK, et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab. 2007;92(5):1891-1896. https://doi.org/10.1210/jc.2006-2513
Formosa R, Vassallo J. Aryl hydrocarbon receptor-interacting protein (AIP) N-terminus gene mutations identified in pituitary adenoma patients Alter protein stability and function. Horm Cancer. 2017;8(3):174-184. https://doi.org/10.1007/s12672-017-0288-3
Vroonen L, Beckers A, Camby S, et al. The clinical and therapeutic profiles of prolactinomas associated with germline pathogenic variants in the aryl hydrocarbon receptor interacting protein (AIP) gene. Front Endocrinol (Lausanne). 2023;14:1242588. https://doi.org/10.3389/fendo.2023.1242588
Zatelli MC, Torre ML, Rossi R, et al. Should aip gene screening be recommended in family members of FIPA patients with R16H variant? Pituitary. 2013;16(2):238-244. https://doi.org/10.1007/ s11102-012-0409-5
Hernández-Ramírez LC, Martucci F, Morgan RM, T, et al. Rapid proteasomal degradation of mutant proteins is the primary mechanism leading to tumorigenesis in patients with missense AIP mutations J Clin Endocrinol Metab. 2016;101(8):3144-54. https://doi.org/10.1210/jc.2016-1307
Oriola J, Lucas T, Halperin I, et al. Germline mutations of AIP gene in somatotropinomas resistant to somatostatin analogues. Eur J Endocrinol. 2013;168(1):9-13. https://doi.org/10.1530/EJE-12-0457
Perez-Rivas LG, Theodoropoulou M, Puar TH, et al. Somatic USP8 mutations are frequent events in corticotroph tumor progression causing Nelson’s tumor. Eur J Endocrinol. 2018;178(1):57-63. https://doi.org/10.1530/EJE-17-0634
De Melo FM, Bastos-Rodrigues L, Sarquis MM, Friedman E, De Marco L. Co-occurrence of MEN1 p.Gly111fs and AIP p.Arg16His variants in familial MEN1 phenotype. Anticancer Res. 2018;38(6):3683-3687. https://doi.org/10.21873/anticanres. 12646
Evers B, Jonkers J. Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene. 2006;25(43):5885-5897. https://doi.org/10.1038/sj.onc.1209871
Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in fanconi anemia. Science. 2002;297(5581):606-609. https://doi.org/10.1126/science.1073834
Korbonits M, Wang X, Barry S, et al. Biallelic loss of molecular chaperone molecule AIP results in a novel severe multisystem disease defined by defective proteostasis. bioRxiv 604602. https://doi.org/10.1101/2024.08.08.604602, August 08, 2024, preprint: not peer reviewed.
Gadelha MR, Une KN, Rohde K, Vaisman M, Kineman RD, Frohman LA. Isolated familial somatotropinomas: establishment of linkage to chromosome 11q13.1-11q13.3 and evidence for a potential second locus at chromosome 2p16-12. J Clin Endocrinol Metab. 2000;85(2):707-714. https://doi.org/10.1210/jcem.85.2. 6386
Soares BS, Eguchi K, Frohman LA. Tumor deletion mapping on chromosome 11q13 in eight families with isolated familial somatotropinoma and in 15 sporadic somatotropinomas. J Clin Endocrinol Metab. 2005;90(12):6580-6587. https://doi.org/10.1210/jc.2005-1478
Cai W, Kramarova TV, Berg P, Korbonits M, Pongratz I. The immunophilin-like protein XAP2 is a negative regulator of estrogen signaling through interaction with estrogen receptor alpha. PLoS One. 2011;6(10):e25201. https://doi.org/10.1371/journal.pone. 0025201
Iwata T, Yamada S, Ito J, et al. A novel C-terminal nonsense mutation, Q315X, of the aryl hydrocarbon receptor-interacting protein gene in a Japanese familial isolated pituitary adenoma family. Endocr Pathol. 2014;25(3):273-281. https://doi.org/10.1007/ s12022-014-9318-7
Iwata T, Yamada S, Mizusawa N, Golam HM, Sano T, Yoshimoto K. The aryl hydrocarbon receptor-interacting protein gene is rarely mutated in sporadic GH-secreting adenomas. Clin Endocrinol (Oxf). 2007;66(4):499-502. https://doi.org/10.1111/j.1365-2265.2007.02758.x
Hooker GW, Ormond KE, Sweet K, Biesecker BB. Teaching genomic counseling: preparing the genetic counseling workforce for the genomic era. J Genet Couns. 2014;23(4):445-451. https://doi.org/10.1007/s10897-014-9689-4
Allison AC. Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J. 1954;1(4857):290-294. https://doi.org/10.1136/bmj.1.4857.290
Manrai AK, Funke BH, Rehm HL, et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med. 2016;375(7): 655-665. https://doi.org/10.1056/NEJMsa1507092
Fowler DM, Rehm HL. Will variants of uncertain significance still exist in 2030? Am J Hum Genet. 2024;111(1):5-10. https://doi.org/10.1016/j.ajhg.2023.11.005