[en] Live attenuated vaccines (LAVs) whose virulence would be controlled at the tissue level could be a crucial tool to effectively fight intracellular bacterial pathogens, because they would optimize the induction of protective immune memory while avoiding the long-term persistence of vaccine strains in the host. Rational development of these new LAVs implies developing an exhaustive map of the bacterial virulence genes according to the host organs implicated. We report here the use of transposon sequencing to compare the bacterial genes involved in the multiplication of Brucella melitensis, a major causative agent of brucellosis, in the lungs and spleens of C57BL/6 infected mice. We found 257 and 135 genes predicted to be essential for B. melitensis multiplication in the spleen and lung, respectively, with 87 genes common to both organs. We selected genes whose deletion is predicted to produce moderate or severe attenuation in the spleen, the main known reservoir of Brucella, and compared deletion mutants for these genes for their ability to protect mice against challenge with a virulent strain of B. melitensis. The protective efficacy of a deletion mutant for the plsC gene, implicated in phospholipid biosynthesis, is similar to that of the reference Rev.1 vaccine but with a shorter persistence in the spleen. Our results demonstrate that B. melitensis faces different selective pressures depending on the organ and underscore the effectiveness of functional genome mapping for the design of new safer LAV candidates.
Disciplines :
Microbiology
Author, co-author :
Barbieux, Emeline; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium ; Laboratoire de Parasitologie, ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
Potemberg, Georges ; Centre Hospitalier Universitaire de Liège - CHU > > Département de Physique Médicale ; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
Stubbe, François-Xavier; Unité de recherche en physiologie moléculaire (URPhyM), Laboratoire de Génétique moléculaire (GéMo), University of Namur, Namur, Belgium
Fraikin, Audrey; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
Poncin, Katy; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
Reboul, Angeline; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
Rouma, Thomas; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium ; Laboratoire de Parasitologie, ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
Zúñiga-Ripa, Amaia; Departamento de Microbiología y Parasitología - IDISNA, Universidad de Navarra, Pamplona, Spain
De Bolle, Xavier; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
Muraille, Eric ; Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium ; Laboratoire de Parasitologie, ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
Language :
English
Title :
Genome-wide analysis of Brucella melitensis growth in spleen of infected mice allows rational selection of new vaccine candidates
This work was supported by grants from the Fonds National de la Recherche Scientifique (FNRS) (CDR J.0120.18 and CDR J.0157.20 to E. M. and PDR T.0058.20 to X.D.B., Belgium). E.M. is a Senior Research Associate from the FRS-FNRS (Belgium). E.B., G.P. and F-X.S. hold FRIA PhD grants from the FRS-FNRS (Belgium). The funders played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript. We thank K. Willemart, F. Tilquin, E. Carlier and M. Waroquier for their technical support.
Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunological Reviews. 2011. pp. 211–234. https://doi.org/10.1111/j.1600-065X.2010.00982.x PMID: 21349096
Atluri VL, Xavier MN, De Jong MF, Den Hartigh AB, Tsolis RM. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol. 2011; 65: 523–541. https://doi.org/10.1146/ annurev-micro-090110-102905 PMID: 21939378
Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos E V. The new global map of human brucellosis. Lancet Infect Dis. 2006; 6: 91–99. https://doi.org/10.1016/S1473-3099(06)70382-6 PMID: 16439329
McDermott J, Grace D, Zinsstag J. Economics of brucellosis impact and control in low-income countries. OIE Rev Sci Tech. 2013; 32: 249–261. https://doi.org/10.20506/rst.32.1.2197 PMID: 23837382
Lai S, Zhou H, Xiong W, Gilbert M, Huang Z, Yu J, et al. Changing epidemiology of human brucellosis, China, 1955–2014. Emerg Infect Dis. 2017; 23: 184–194. https://doi.org/10.3201/eid2302.151710 PMID: 28098531
Laine CG, Johnson VE, Scott HM, Arenas-Gamboa AM. Global Estimate of Human Brucellosis Incidence. Emerg Infect Dis. 2023; 29: 1789–1797. https://doi.org/10.3201/eid2909.230052 PMID: 37610167
Moreno E, Moriyón I. The Genus Brucella. The Prokaryotes. 2006. https://doi.org/10.1007/0-387-30745-1_17
Blasco JM, Moreno E, Muñoz PM, C Álvarez R, Moriyón I. A review of three decades of use of the cattle brucellosis rough vaccine Brucella abortus RB51: myths and facts. BMC Vet Res. 2023; 1–21. https://doi.org/10.1186/s12917-023-03773-3 PMID: 37853407
Blasco JM. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev Vet Med. 1997; 31: 275–283. https://doi.org/10.1016/s0167-5877(96)01110-5 PMID: 9234451
Ficht TA, Kahl-McDonagh MM, Arenas-Gamboa AM, Rice-Ficht AC. Brucellosis: The case for live, attenuated vaccines. Vaccine. 2009; 27. https://doi.org/10.1016/j.vaccine.2009.08.058 PMID: 19837284
Dorneles EMS, Sriranganathan N, Lage AP. Recent advances in Brucella abortus vaccines. Vet Res. 2015; 46: 1–10. https://doi.org/10.1186/s13567-015-0199-7 PMID: 26155935
Blasco J, Moreno E, Moriyón I. Brucellosis vaccines and vaccine candidates. First Edit. In: Metwally S, Viljoen G, El Idrissi A, editors. Veterinary vaccines Principles and applications. First Edit. Rome: Hobeken; 2021. pp. 295–316.
Blasco JM, Molina-Flores B. Control and Eradication of Brucella melitensis Infection in Sheep and Goats. Vet Clin North Am—Food Anim Pract. 2011; 27: 95–104. https://doi.org/10.1016/j.cvfa.2010.10. 003 PMID: 21215893
Van Opijnen T, Camilli A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Publ Gr. 2013; 11: 435–442. https://doi.org/10.1038/nrmicro3033 PMID: 23712350
Potemberg G, Demars A, Barbieux E, Galia M, Lagneaux M, Comein A, et al. Genome-wide analysis of Brucella melitensis genes required throughout intranasal infection in mice. PLOS Pathog. 2022; 16: e1010621. https://doi.org/10.1371/journal.ppat.1010621 PMID: 35771771
Mambres DH, MacHelart A, Potemberg G, De Trez C, Ryffel B, Letesson J-J, et al. Identification of immune effectors essential to the control of primary and secondary intranasal infection with brucella melitensis in mice. J Immunol. 2016; 196:3780–3793. https://doi.org/10.4049/jimmunol.1502265 PMID: 27036913
Copin R, De Baetselier P, Carlier Y, Letesson J-J, Muraille E. MyD88-dependent activation of B220-CD11b+LY-6C + dendritic cells during Brucella melitensis infection. J Immunol. 2007; 178: 5182–5191. 178/8/5182 [pii].
Grilló M, Blasco JM, Gorvel JP, Moriyón I, Moreno E. What have we learned from brucellosis in the mouse model? 2012; 1–35.
Demars A, Lison A, Machelart A, Van Vyve M, Potemberg G, Vanderwinden JJ-M, et al. Route of Infection Strongly Impacts the Host-Pathogen Relationship. Front Immunol. 2019; 10: 1589. https://doi.org/10.3389/fimmu.2019.01589 PMID: 31354728
Archambaud C, Salcedo SP, Lelouard H, Devilard E, De Bovis B, Van Rooijen N, et al. Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection. Eur J Immunol. 2010; 40: 3458–3471. https://doi.org/10.1002/eji.201040497 PMID: 21108467
Copin R, Vitry M-A, Hanot Mambres D, Machelart A, De Trez C, Vanderwinden J-M, et al. In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice. PLoS Pathog. 2012; 8: e1002575. https://doi.org/10.1371/journal.ppat. 1002575 PMID: 22479178
Mambres DH, Machelart A, Vanderwinden JM, De Trez C, Ryffel B, Letesson JJ, et al. In situ characterization of splenic brucella melitensis reservoir cells during the chronic phase of infection in susceptible mice. PLoS One. 2015; 10: 1–20. https://doi.org/10.1371/journal.pone.0137835 PMID: 26376185
Delrue RM, Deschamps C, Léonard S, Nijskens C, Danese I, Schaus JM, et al. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell Microbiol. 2005; 7: 1151–1161. https://doi.org/10.1111/j.1462-5822.2005.00543.x PMID: 16008582
Arocena GM, Sieira R, Comerci DJ, Ugalde RA. Identification of the quorum-sensing target DNA sequence and N-acyl homoserine lactone responsiveness of the Brucella abortus virB promoter. J Bacteriol. 2010; 192: 3434–3440. https://doi.org/10.1128/JB.00232-10 PMID: 20400542
Lacey CA, Chambers CA, Mitchell WJ, Skyberg JA. IFN-γ-dependent nitric oxide suppresses Brucella-induced arthritis by inhibition of inflammasome activation. Journal of Leukocyte Biology. 2019. pp. 27–34. https://doi.org/10.1002/JLB.4MIA1018-409R PMID: 30748031
Vitry M-A, De Trez C, Goriely S, Dumoutier L, Akira S, Ryffel B, et al. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun. 2012; 80: 4271–80. https://doi.org/10.1128/IAI.00761-12 PMID: 23006848
Sheehan LM, Budnick JA, Blanchard C, Dunman PM, Caswell CC. A LysR-family transcriptional regulator required for virulence in Brucella abortus is highly conserved among the α-proteobacteria. Molecular Microbiology. 2015. pp. 318–328. https://doi.org/10.1111/mmi.13123 PMID: 26175079
ELBERG SS, FAUNCE K. Immunization against Brucella infection. VI. Immunity conferred on goats by a nondependent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. J Bacteriol. 1957; 73: 211–217. https://doi.org/10.1128/jb.73.2.211-217.1957 PMID: 13416171
Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: Past, present and future. Vet Microbiol. 2002; 90: 479–496. https://doi.org/10.1016/s0378-1135(02)00255-9 PMID: 12414166
Alton GG. Control of brucella melitensis infection in sheep and goats-a review. Trop Anim Health Prod. 1987; 19: 65–74. https://doi.org/10.1007/BF02297320 PMID: 3307078
Banai M. Control of small ruminant brucellosis by use of Brucella melitensis Rev.1 vaccine: Laboratory aspects and field observations. Vet Microbiol. 2002; 90: 497–519. https://doi.org/10.1016/s0378-1135 (02)00231-6 PMID: 12414167
Higgins JL, Gonzalez-juarrero M, Bowen RA. Evaluation of shedding, tissue burdens, and humoral immune response in goats after experimental challenge with the virulent Brucella melitensis strain 16M and the reduced virulence vaccine strain Rev. 1. 2017; 1–16.
Blasco JM, Díaz R. Brucella melitensis Rev-1 vaccine as a cause of human brucellosis. Lancet. 1993; 342: 805. https://doi.org/10.1016/0140-6736(93)91571-3 PMID: 8103891
Vives-Soto M, Puerta-García A, Rodríguez-Sánchez E, Pereira J, Solera J. What risk do Brucella vaccines pose to humans? A systematic review of the scientific literature on occupational exposure. PLoS Negl Trop Dis. 2024; 18: 1–12. https://doi.org/10.1371/journal.pntd.0011889 PMID: 38190394
Salmon-Divon M, Zahavi T, Kornspan D. Transcriptomic analysis of the brucella melitensisrev.1 vaccine strain in an acidic environment: Insights into virulence attenuation. Front Microbiol. 2019; 10: 1–12. https://doi.org/10.3389/fmicb.2019.00250 PMID: 30837973
González D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM, et al. Brucellosis vaccines: Assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One. 2008; 3. https://doi.org/10.1371/journal.pone.0002760 PMID: 18648644
Vitry M-A, Hanot Mambres D, Deghelt M, Hack K, Machelart A, Lhomme F, et al. Brucella melitensis invades murine erythrocytes during infection. Infect Immun. 2014. https://doi.org/10.1128/IAI.01779-14 PMID: 25001604
Eisenschenk FC, Houle JJ, Hoffmann EM. Mechanism of serum resistance among Brucella abortus isolates. Vet Microbiol. 1999; 68: 235–244. https://doi.org/10.1016/s0378-1135(99)00075-9 PMID: 10510042
Allen CA, Adams LG, Ficht TA. Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun. 1998; 66: 1008–1016. https://doi.org/10.1128/IAI.66.3.1008-1016.1998 PMID: 9488389
De Tejada GM, Pizarro-Cerda J, Moreno E, Moriyon I. The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun. 1995; 63: 3054–3061. https://doi.org/10.1128/iai.63.8.3054-3061.1995 PMID: 7622230
Ronneau S, Moussa S, Barbier T, Conde-Álvarez R, Zuniga-Ripa A, Moriyon I, et al. Brucella, nitrogen and virulence. Crit Rev Microbiol. 2016; 42: 507–525. https://doi.org/10.3109/1040841X.2014.962480 PMID: 25471320
Alcantara RB, Read RDA, Valderas MW, Brown TD, Roop RM. Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun. 2004; 72: 4911–4917. https://doi.org/10.1128/IAI.72.8.4911-4917.2004 PMID: 15271960
de Jong MF, Tsolis RM. Brucellosis and type IV secretion. Future Microbiol. 2012; 1: 47–58. https://doi.org/10.2217/fmb.11.136 PMID: 22191446
Sun YH, Rolán HG, Den Hartigh AB, Sondervan D, Tsolis RM. Brucella abortus VirB12 is expressed during infection but is not an essential component of the type IV secretion system. Infect Immun. 2005; 73: 6048–6054. https://doi.org/10.1128/IAI.73.9.6048-6054.2005 PMID: 16113325
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, et al. Brucella central carbon metabolism: an update. Crit Rev Microbiol. 2018; 44: 182–211. https://doi.org/10.1080/1040841X.2017.1332002 PMID: 28604247
MacHelart A, Willemart K, Zúñiga-Ripa A, Godard T, Plovier H, Wittmann C, et al. Convergent evolution of zoonotic Brucella species toward the selective use of the pentose phosphate pathway. Proc Natl Acad Sci U S A. 2020; 117: 26374–26381. https://doi.org/10.1073/pnas.2008939117 PMID: 33020286
Zúñiga-Ripa A, Barbier T, Lázaro-Antón L, de Miguel MJ, Conde-álvarez R, Muñoz PM, et al. The fast-growing Brucella suis Biovar 5 depends on phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase but not on Fbp and GlpX fructose-1,6-bisphosphatases or isocitrate lyase for full virulence in laboratory models. Front Microbiol. 2018; 9: 1–13. https://doi.org/10.3389/fmicb.2018.00641 PMID: 29675004
Zúñiga-Ripa A, Barbier T, Conde-Álvarez R, Martínez-Gómez E, Palacios-Chaves L, Gil-Ramírez Y, et al. Brucella abortus depends on pyruvate phosphate dikinase and malic enzyme but not on fbp and glpX fructose-1,6-bisphosphatases for full virulence in laboratory models. J Bacteriol. 2014; 196: 3045–3057. https://doi.org/10.1128/JB.01663-14 PMID: 24936050
Maloy SR, Bohlander M, Nunn WD. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J Bacteriol. 1980; 143: 720–725. https://doi.org/10.1128/jb.143.2.720-725.1980 PMID: 7009561
Köhler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, et al. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A. 2002; 99: 15711–15716. https://doi.org/10.1073/pnas.232454299 PMID: 12438693
Hong PC, Tsolis RM, Ficht TA. Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun. 2000; 68: 4102–4107. https://doi.org/10.1128/IAI.68.7.4102-4107.2000 PMID: 10858227
Wu Q, Pei J, Turse C, Ficht TA. Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol. 2006; 6: 1–15. https://doi.org/10.1186/1471-2180-6-102 PMID: 17176467
Gottschalk G. Bacterial Metabolism. 2nd Editio. New York: Springer-Verlag; 1986.
Lacey CA, Ponzilacqua-Silva B, Chambers CA, Dadelahi AS, Skyberg JA. MyD88-Dependent Glucose Restriction and Itaconate Production Control Brucella Infection. Infect Immun. 2021. https://doi.org/10.1128/IAI.00156-21 PMID: 34125603
Watford M. Glutamine and glutamate: Nonessential or essential amino acids? Anim Nutr. 2015; 1: 119–122. https://doi.org/10.1016/j.aninu.2015.08.008 PMID: 29767158
Tullius M V., Harth G, Horwitz MA. Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun. 2003; 71: 3927–3936. https://doi.org/10.1128/IAI.71.7.3927-3936.2003 PMID: 12819079
Anand R, Hoskins AA, Bennett EM, Sintchak MD, Stubbe JA, Ealick SE. A model for the Bacillus subtilis formylglycinamide ribonucleotide amidotransferase multiprotein complex. Biochemistry. 2004; 43: 10343–10352. https://doi.org/10.1021/bi0491292 PMID: 15301532
Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol. 2013; 114: 11–24. https://doi.org/10.1111/j.1365-2672.2012.05434.x PMID: 22924898
Damiano MA, Bastianelli D, Al Dahouk S, Köhler S, Cloeckaert A, de Biase D, et al. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: Distribution and contribution to fitness under extremely acidic conditions. Appl Environ Microbiol. 2015; 81: 578–586. https://doi.org/10.1128/AEM. 02928-14 PMID: 25381237
Lott J. Shaun The tryptophan biosynthetic pathway is essential for Mycobacterium tuberculosis to cause disease. Biochem Soc Trans. 2020; 48: 2029–2037. https://doi.org/10.1042/BST20200194 PMID: 32915193
Kerrinnes T, Young BM, Leon C, Roux CM, Tran L, Atluri VL, et al. Phospholipase A1 modulates the cell envelope phospholipid content of brucella melitensis, contributing to polymyxin resistance and pathogenicity. Antimicrob Agents Chemother. 2015; 59: 6717–6724. https://doi.org/10.1128/AAC.00792-15 PMID: 26282427
Clapp B, Skyberg JA, Yang X, Thornburg T, Walters N, Pascual W pascual. Protective live oral brucellosis vaccines stimulate Th1 and Th17 cell responses. Infect Immun. 2011; 79: 4165–4174. https://doi.org/10.1128/IAI.05080-11 PMID: 21768283
Yang X, Becker T, Walters N, Pascual DW. Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infect Immun. 2006; 74: 3874–3879. https://doi.org/10.1128/IAI.01957-05 PMID: 16790759
Fisher SL. Glutamate racemase as a target for drug discovery. Microb Biotechnol. 2008; 1: 345–360. https://doi.org/10.1111/j.1751-7915.2008.00031.x PMID: 21261855
Doublet P, Van Heijenoort J, Bohin JP, Mengin-Lecreulx D. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J Bacteriol. 1993; 175: 2970–2979. https://doi.org/10.1128/jb.175.10.2970-2979.1993 PMID: 8098327
Morayya S, Awasthy D, Yadav R, Ambady A, Sharma U. Revisiting the essentiality of glutamate racemase in Mycobacterium tuberculosis. Gene. 2015; 555: 269–276. https://doi.org/10.1016/j.gene.2014.11.017 PMID: 25447907
Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR. Expression and regulation of 1-acyl-sn-glyc-erol-3-phosphate acyltransferases in the epidermis. J Lipid Res. 2005; 46: 2448–2457. https://doi.org/10.1194/jlr.M500258-JLR200 PMID: 16150824
Abrahams KA, Cox JAG, Fütterer K, Rullas J, Ortega-Muro F, Loman NJ, et al. Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Sci Rep. 2017; 7: 1–15. https://doi.org/10.1038/s41598-017-09642-y PMID: 28842600
Verger JM, Grayon M, Chaslus-Dancla E, Meurisse M, Lafont JP. Conjugative transfer and in vitro/in vivo stability of the broad-host-range IncP R751 plasmid in brucella spp. Plasmid. 1993; 29: 142–146. https://doi.org/10.1006/plas.1993.1016 PMID: 8469720
Casadaban MJ, Cohen SN. Analysis of Gene Control Signals by DNA Fusion and Cloning in Escherichia coli. J Mol Biol. 1980; 138: 179–207. https://doi.org/10.1016/0022-2836(80)90283-1 PMID: 6997493
Ouahrani-bettache S, Porte F, Teyssier J, Liautard J, Köhler S. pBBR1-GFP: A Broad- Host-Range Vector for Prokaryotic Promoter Studies. Biotechniques. 1999; 26: 620–622. https://doi.org/10.2144/ 99264bm05 PMID: 10343896
Sternon J, Godessart P, Gonçalves de Freitas R, Van der Henst M, Poncin K, Francis N, et al. Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth In Vitro and Inside Macrophages. Infect Immun. 2018; 86: 1–20. https://doi.org/10.1128/IAI.00312-18 PMID: 29844240
Lestrate P, Delrue R, Danese I, Didembourg C, Taminiau B, Mertens P, et al. Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol. 2000; 38: 543–551. https://doi.org/10.1046/j.1365-2958.2000.02150.x PMID: 11069678
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009; 25: 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment / Map format and SAMtools. Bioinformatics. 2009; 25: 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943
Finan TM, Kunkel B, De Vos GF, Signer ER. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol. 1986; 167: 66–72. https://doi.org/10.1128/jb.167.1.66-72.1986 PMID: 3013840
Deghelt M, Mullier C, Sternon J-F, Francis N, Laloux G, Dotreppe D, et al. G1-arrested newborn cells are the predominant infectious form of the pathogen Brucella abortus. Nat Commun. 2014; 5: 4366. Available: http://www.ncbi.nlm.nih.gov/pubmed/25006695 https://doi.org/10.1038/ncomms5366 PMID: 25006695
Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature biotechnology. 2004. pp. 1567–1572. https://doi.org/10.1038/nbt1037 PMID: 15558047