Cross-sectional associations between healthy and unhealthy plant-based diets and metabolic syndrome in three distinct French populations, a meta-analysis.
Prioux, Clémentine; Wagner, Sandra; Fézeu, Léopold Ket al.
[en] Prior studies have shown that plant-based diets are associated with lower cardiovascular risk. However, these diets encompass a large diversity of foods with contrasted nutritional quality that may differentially impact health. We aimed to investigate the pooled cross-sectional association between metabolic syndrome (MetS), its components, and healthy and unhealthy plant-based diet indices (hPDI and uPDI), using data from two French cohorts and one representative study from the French population. This study included 16,358 participants from the NutriNet-Santé study, 1,769 participants from the Esteban study and 1,565 participants from the STANISLAS study who underwent a clinical visit. The MetS was defined according to the International Diabetes Federation definition. The associations between these plant-based diet indices and MetS were estimated by multivariable Poisson and logistic regression models, stratified by gender. Meta-analysis enabled the computation of a pooled Prevalence Ratio. A higher contribution of healthy plant foods (higher hPDI) was associated with a lower probability of having MetS (PRmen: 0.85; 95% CI: 0.75-0.94, PRwomen: 0.72; 95% CI: 0.67-0.77), elevated waist circumferences and elevated blood pressure. In women, a higher hPDI was associated with a lower probability of having elevated triglycerides, low HDL-cholesterolemia and hyperglycemia; and a higher contribution of unhealthy plant foods was associated with a higher prevalence of MetS (PRwomen: 1.13; 95% CI: 1.01-1.26) and elevated triglycerides. A greater contribution of healthy plant floods was associated with protective effects on metabolic syndrome, especially in women. Gender differences should be further investigated in relation to the current sustainable nutrition transition.
Disciplines :
Public health, health care sciences & services
Author, co-author :
Prioux, Clémentine ; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France
Wagner, Sandra; University of Lorraine, Inserm CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, 4 rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France
Fézeu, Léopold K; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France
Deschamps, Valérie; Nutritional Epidemiology Surveillance Team (ESEN), Santé publique France, The French Public Health Agency, Bobigny, France
Verdot, Charlotte; Nutritional Epidemiology Surveillance Team (ESEN), Santé publique France, The French Public Health Agency, Bobigny, France
Baudry, Julia ; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France
Touvier, Mathilde; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France
Herberg, Serge; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France ; Public health Department, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
Nazare, Julie-Anne; Centre de Recherche en Nutrition Humaine Rhône-Alpes, CarMeN lab, Univ-Lyon, Inserm, INRAe, Claude Bernard Lyon1 University, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
Hoge, Axelle ; Université de Liège - ULiège > Santé publique : de la Biostatistique à la Promotion de la Santé
Ferreira, Joao Pedro; University of Lorraine, Inserm CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, 4 rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France ; Cardiovascular R&D Centre-UnIC@RISE, Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto, Porto, Portugal ; Department of Internal Medicine, Heart Failure Clinic, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
Rossignol, Patrick; University of Lorraine, Inserm CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, 4 rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France ; Medicine and Nephrology-Dialysis Departments, Princess Grace Hospital, and Monaco Private Hemodialysis Centre, Monaco, Monaco
Girerd, Nicolas; University of Lorraine, Inserm CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, 4 rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France
Tatulashvili, Sopio; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France ; AP-HP, Avicenne Hospital, Paris 13 University, Sorbonne Paris Cité, Department of Endocrinology-Diabetology-Nutrition, CRNH-IdF, CINFO, 93000 Bobigny, France
Kesse-Guyot, Emmanuelle; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France
Allès, Benjamin ; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center of Research in Epidemiology and StatisticS (CRESS), 74 rue Marcel Cachin, F-93017, Bobigny, France
Cross-sectional associations between healthy and unhealthy plant-based diets and metabolic syndrome in three distinct French populations, a meta-analysis.
Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res Clin Pract. 2022;188:109924. DOI: 10.1016/j.diabres.2022.109924
[En ligne]. Harmonizing the Metabolic Syndrome | Circulation [cité le 23 nov 2023]. Disponible: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.192644?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
DeBoer MD, Gurka MJ. Clinical utility of metabolic syndrome severity scores: considerations for practitioners. Diabetes Metab Syndr Obes Targets Ther. 2017;10:65‑72. DOI: 10.2147/DMSO.S101624
Wang J, Ruotsalainen S, Moilanen L, Lepistö P, Laakso M, Kuusisto J. The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. Eur Heart J. 2007;28(7):857‑64. DOI: 10.1093/eurheartj/ehl524
Simmons RK, Alberti KGMM, Gale EAM, Colagiuri S, Tuomilehto J, Qiao Q, et al. The metabolic syndrome: useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia. 2010;53(4):600‑5. DOI: 10.1007/s00125-009-1620-4
Lichtenstein AH, Appel LJ, Vadiveloo M, Hu FB, Kris-Etherton PM, Rebholz CM, et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation. American Heart Association; 2021;144(23):e472‑87. DOI: 10.1161/CIR.0000000000001031
Kahleova H, Levin S, Barnard N. Cardio-Metabolic Benefits of Plant-Based Diets. Nutrients. 2017;9(8):848. DOI: 10.3390/nu9080848
Thomas MS, Calle M, Fernandez ML. Healthy plant-based diets improve dyslipidemias, insulin resistance, and inflammation in metabolic syndrome. A narrative review. Adv Nutr. 2022;14(1):44‑54. DOI: 10.1016/j.advnut.2022.10.002
Hemler EC, Hu FB. Plant-Based Diets for Cardiovascular Disease Prevention: All Plant Foods Are Not Created Equal. Curr Atheroscler Rep. 2019;21(5):18. DOI: 10.1007/s11883-019-0779-5
Satija A, Bhupathiraju SN, Spiegelman D, Chiuve SE, Manson JE, Willett W, et al. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in US adults. J Am Coll Cardiol. 2017;70(4):411‑22. DOI: 10.1016/j.jacc.2017.05.047
Heianza Y, Zhou T, Sun D, Hu FB, Manson JE, Qi L. Genetic susceptibility, plant-based dietary patterns, and risk of cardiovascular disease. Am J Clin Nutr. 2020;112(1):220‑8. DOI: 10.1093/ajcn/nqaa107
Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, et al. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016;13(6). DOI: 10.1371/journal.pmed.1002039
Jovanovic CES, Hoelscher DM, Chen B, Ranjit N, van den Berg AE. The associations of plant-based food and metabolic syndrome using NHANES 2015–16 data. J Public Health. 2023;45(1):e22‑9. DOI: 10.1093/pubmed/fdab403
Bhupathiraju SN, Sawicki CM, Goon S, Gujral UP, Hu FB, Kandula NR, et al. A healthy plant–based diet is favorably associated with cardiometabolic risk factors among participants of South Asian ancestry. Am J Clin Nutr. 2022;116(4):1078‑90. DOI: 10.1093/ajcn/nqac174
Kim H, Lee K, Rebholz CM, Kim J. Association between unhealthy plant-based diets and the metabolic syndrome in adult men and women: a population-based study in South Korea. Br J Nutr. 2021;125(5):577‑90. DOI: 10.1017/S0007114520002895
Kim H, Lee K, Rebholz CM, Kim J. Plant-based diets and incident metabolic syndrome: Results from a South Korean prospective cohort study. PLoS Med. 2020;17(11):e1003371. DOI: 10.1371/journal.pmed.1003371
Huo Y, Cao S, Liu J, Zhang B, Xu K, Wang Y, et al. The Association between Plant-Based Diet Indices and Metabolic Syndrome in Chinese Adults: Longitudinal Analyses from the China Health and Nutrition Survey. Nutrients. 2023;15(6):1341. DOI: 10.3390/nu15061341
Oncina-Cánovas A, Vioque J, González-Palacios S, Martínez-González MÁ, Salas-Salvadó J, Corella D, et al. Pro-vegetarian food patterns and cardiometabolic risk in the PREDIMED-Plus study: a cross-sectional baseline analysis. Eur J Nutr. Springer; 2022;61(1):357. DOI: 10.1007/s00394-021-02647-4
Lanuza F, Meroño T, Zamora-Ros R, Bondonno NP, Rostgaard-Hansen AL, Sánchez-Pla A, et al. Plasma metabolomic profiles of plant-based dietary indices reveal potential pathways for metabolic syndrome associations. Atherosclerosis. 2023;382:117285. DOI: 10.1016/j.atherosclerosis.2023.117285
Hercberg S, Castetbon K, Czernichow S, Malon A, Mejean C, Kesse E, et al. The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health. 2010;10:242. DOI: 10.1186/1471-2458-10-242
Balicco A, Oleko A, Szego E, Boschat L, Deschamps V, Saoudi A, et al. Protocole Esteban: une Étude transversale de santé sur l’environnement, la biosurveillance, l’activité physique et la nutrition (2014–2016). Toxicol Anal Clin. 2017;29(4):517‑37. DOI: 10.1016/j.toxac.2017.06.003
Vay‐Demouy J, Lelong H, Neudorff P, Gabet A, Grave C, Blacher J, et al. Underuse of lifestyle recommendations in hypertension management in France: The Esteban study. J Clin Hypertens. 2022;24(10):1266‑75. DOI: 10.1111/jch.14576
Ferreira JP, Girerd N, Bozec E, Mercklé L, Pizard A, Bouali S, et al. Cohort Profile: Rationale and design of the fourth visit of the STANISLAS cohort: a familial longitudinal population-based cohort from the Nancy region of France. Int J Epidemiol. 2018;47(2):395‑395j. DOI: 10.1093/ije/dyx240
Planella T, Cortés M, Martínez-Brú C, González-Sastre F, Ordóñez-Llanos J. Calculation of LDL-cholesterol by using apolipoprotein B for classification of nonchylomicronemic dyslipemia. Clin Chem. 1997;43(5):808‑15.
Tolonen H. [En ligne]. 2016. EHES Manual: Part A. Planning and preparation of the survey [cité le 12 févr 2024]. Disponible: https://www.julkari.fi/handle/10024/131502
Lassale C, Galan P, Julia C, Fezeu L, Hercberg S, Kesse-Guyot E. Association between Adherence to Nutritional Guidelines, the Metabolic Syndrome and Adiposity Markers in a French Adult General Population. PLoS ONE. 2013;8(10):e76349. DOI: 10.1371/journal.pone.0076349
Subar AF, Dodd KW, Guenther PM, Kipnis V, Midthune D, McDowell M, et al. The Food Propensity Questionnaire: Concept, Development, and Validation for Use as a Covariate in a Model to Estimate Usual Food Intake. J Am Diet Assoc. 2006;106(10):1556‑63. DOI: 10.1016/j.jada.2006.07.002
Moullec N, Deheeger M, Preziosi P, Monteiro P, Valeix P, Rolland-Cachera M, et al. Validation du manuel-photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX. Nutr Clin Metab [En ligne]. 1996 [cité le 12 févr 2024]; Disponible: https://www.semanticscholar.org/paper/Validation-du-manuel-photos-utilis%C3%A9-pourl%27enqu%C3%AAte-Moullec-Deheeger/3e18905fb9584e0766662ae6a052cac245eb1807
[En ligne]. Achat livre Table de composition des aliments ETUDE NUTRINET SANTE - Economica [cité le 12 oct 2022]. Disponible: https://www.economica.fr/livre-table-decomposition-des-aliments-etude-nutrinet-sante-c2x32211075
Black AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2000;24(9):1119‑30. DOI: 10.1038/sj.ijo.0801376
Touvier M, Kesse-Guyot E, Méjean C, Pollet C, Malon A, Castetbon K, et al. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr. 2011;105(7):1055‑64. DOI: 10.1017/S0007114510004617
Lassale C, Castetbon K, Laporte F, Camilleri GM, Deschamps V, Vernay M, et al. Validation of a Web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. Br J Nutr. Cambridge University Press; 2015;113(6):953‑62. DOI: 10.1017/S0007114515000057
Lassale C, Castetbon K, Laporte F, Deschamps V, Vernay M, Camilleri GM, et al. Correlations between Fruit, Vegetables, Fish, Vitamins, and Fatty Acids Estimated by Web-Based Nonconsecutive Dietary Records and Respective Biomarkers of Nutritional Status. J Acad Nutr Diet. 2016;116(3):427-438.e5. DOI: 10.1016/j.jand.2015.09.017
Sauvageot N, Alkerwi A, Albert A, Guillaume M. Use of food frequency questionnaire to assess relationships between dietary habits and cardiovascular risk factors in NESCAV study: validation with biomarkers. Nutr J. 2013;12:143. DOI: 10.1186/1475-2891-12-143
Gehring J, Touvier M, Baudry J, Julia C, Buscail C, Srour B, et al. Consumption of Ultra-Processed Foods by Pesco-Vegetarians, Vegetarians, and Vegans: Associations with Duration and Age at Diet Initiation. J Nutr. 2021;151(1):120‑31. DOI: 10.1093/jn/nxaa196
Satija A, Bhupathiraju SN, Spiegelman D, Chiuve SE, Manson JE, Willett W, et al. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in US adults. J Am Coll Cardiol. 2017;70(4):411‑22. DOI: 10.1016/j.jacc.2017.05.047
Gehring J, Touvier M, Baudry J, Julia C, Buscail C, Srour B, et al. Consumption of Ultra-Processed Foods by Pesco-Vegetarians, Vegetarians, and Vegans: Associations with Duration and Age at Diet Initiation. J Nutr. 2021;151(1):120‑31. DOI: 10.1093/jn/nxaa196
Colombet Z, Allès B, Si Hassen W, Lampuré A, Kesse-Guyot E, Péneau S, et al. Individual characteristics associated with changes in the contribution of plant foods to dietary intake in a French prospective cohort. Eur J Nutr. 2019;58(5):1991‑2002. DOI: 10.1007/s00394-018-1752-8
Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9(6):755‑62. DOI: 10.1079/phn2005898
Golubic R, May AM, Borch KB, Overvad K, Charles M-A, Diaz MJT, et al. Validity of Electronically Administered Recent Physical Activity Questionnaire (RPAQ) in Ten European Countries. PLOS ONE. Public Library of Science; 2014;9(3):e92829. DOI: 10.1371/journal.pone.0092829
Zou G. A Modified Poisson Regression Approach to Prospective Studies with Binary Data. Am J Epidemiol. 2004;159(7):702‑6. DOI: 10.1093/aje/kwh090
Wagner S, Lioret S, Girerd N, Duarte K, Lamiral Z, Bozec E, et al. Association of Dietary Patterns Derived Using Reduced‐Rank Regression With Subclinical Cardiovascular Damage According to Generation and Sex in the STANISLAS Cohort. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2020;9(7):e013836. DOI: 10.1161/JAHA.119.013836
Julie Argouarc’h, Marie-Cécile Cazenave-Lacrouts. Insee [En ligne]. 12 sept 2017. Les niveaux de vie en 2015 − Revenu, niveau de vie et pauvreté en 2015 | Insee [cité le 22 déc 2024]. Disponible: https://www.insee.fr/fr/statistiques/3055008?sommaire=3225624#consulter-sommaire
Satija A, Malik V, Rimm EB, Sacks F, Willett W, Hu FB. Changes in intake of plant-based diets and weight change: results from 3 prospective cohort studies. Am J Clin Nutr. 2019;110(3):574‑82. DOI: 10.1093/ajcn/nqz049
Kim H, Rebholz CM, Garcia-Larsen V, Steffen LM, Coresh J, Caulfield LE. Operational Differences in Plant-Based Diet Indices Affect the Ability to Detect Associations with Incident Hypertension in Middle-Aged US Adults. J Nutr. 2020;150(4):842‑50. DOI: 10.1093/jn/nxz275
Gómez-Donoso C, Martínez-González MÁ, Martínez JA, Gea A, Sanz-Serrano J, Perez-Cueto FJA, et al. A Provegetarian Food Pattern Emphasizing Preference for Healthy Plant-Derived Foods Reduces the Risk of Overweight/Obesity in the SUN Cohort. Nutrients. Multidisciplinary Digital Publishing Institute; 2019;11(7):1553. DOI: 10.3390/nu11071553
Wyndels K, Dallongeville J, Simon C, Bongard V, Wagner A, Ruidavets J-B, et al. Regional factors interact with educational and income tax levels to influence food intake in France. Eur J Clin Nutr. Nature Publishing Group; 2011;65(9):1067‑75. DOI: 10.1038/ejcn.2011.73
Méjean C, Si Hassen W, Lecossais C, Lampuré A, Hercberg S, Castetbon K. Disparités socioéconomiques des consommations d’aliments d’origine animale. Étude NutriNet-Santé, France. Rev DÉpidémiologie Santé Publique. 2016;64:S227. DOI: 10.1016/j.respe.2016.06.226
Reuzé A, Méjean C, Carrère M, Sirieix L, Druesne-Pecollo N, Péneau S, et al. Rebalancing meat and legume consumption: change-inducing food choice motives and associated individual characteristics in non-vegetarian adults. Int J Behav Nutr Phys Act. 2022;19:112. DOI: 10.1186/s12966-022-01317-w
Vishram JKK, Borglykke A, Andreasen AH, Jeppesen J, Ibsen H, Jørgensen T, et al. Impact of Age and Gender on the Prevalence and Prognostic Importance of the Metabolic Syndrome and Its Components in Europeans. The MORGAM Prospective Cohort Project. PLOS ONE. Public Library of Science; 2014;9(9):e107294. DOI: 10.1371/journal.pone.0107294
Pucci G, Alcidi R, Tap L, Battista F, Mattace-Raso F, Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol Res. 2017;120:34‑42. DOI: 10.1016/j.phrs.2017.03.008
Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the Metabolic Syndrome. Arch Intern Med. 2008;168(14):1568‑75. DOI: 10.1001/archinte.168.14.1568
Tunstall-Pedoe H. Myth and paradox of coronary risk and the menopause. The Lancet. 1998;351(9113):1425‑7. DOI: 10.1016/S0140-6736(97)11321-6
Rossouw JE. Hormones, genetic factors, and gender differences in cardiovascular disease. Cardiovasc Res. 2002;53(3):550‑7. DOI: 10.1016/S0008-6363(01)00478-3
Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev. 2001;59(5):129‑39. DOI: 10.1111/j.1753-4887.2001.tb07001.x
Risérus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res. 2009;48(1):44‑51. DOI: 10.1016/j.plipres.2008.10.002
Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res. 2013;68(1):125‑31. DOI: 10.1016/j.phrs.2012.10.018
Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. The BMJ. 2013;346:f1378. DOI: 10.1136/bmj.f1378
Aaron KJ, Sanders PW. Role of Dietary Salt and Potassium Intake in Cardiovascular Health and Disease: A Review of the Evidence. Mayo Clin Proc Mayo Clin. 2013;88(9):10.1016/j.mayocp.2013.06.005. DOI: 10.1016/j.mayocp.2013.06.005
Kolte D, Vijayaraghavan K, Khera S, Sica DA, Frishman WH. Role of magnesium in cardiovascular diseases. Cardiol Rev. 2014;22(4):182‑92. DOI: 10.1097/CRD.0000000000000003
Volpe SL. Magnesium in Disease Prevention and Overall Health12. Adv Nutr. 2013;4(3):378S-383S. DOI: 10.3945/an.112.003483
Martinez TM, Meyer RK, Duca FA. Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients. Multidisciplinary Digital Publishing Institute; 2021;13(10):3470. DOI: 10.3390/nu13103470
Kastorini C-M, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The Effect of Mediterranean Diet on Metabolic Syndrome and its Components: A Meta-Analysis of 50 Studies and 534,906 Individuals. J Am Coll Cardiol. 2011;57(11):1299‑313. DOI: 10.1016/j.jacc.2010.09.073
Rosenfeld RM, Juszczak HM, Wong MA. Scoping review of the association of plant-based diet quality with health outcomes. Front Nutr [En ligne]. 2023 [cité le 20 févr 2024];10. Disponible: https://www.frontiersin.org/articles/10.3389/fnut.2023.1211535
Flint M, Bowles S, Lynn A, Paxman JR. Novel plant-based meat alternatives: future opportunities and health considerations. Proc Nutr Soc. 2023;82(3):370‑85. DOI: 10.1017/S0029665123000034
Mariotti F. Nutritional and health benefits and risks of plant-based substitute foods. Proc Nutr Soc. 2023;1‑14. DOI: 10.1017/S0029665123004767
Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Méjean C, Andrianasolo RM, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). The BMJ. 2019;365:l1451. DOI: 10.1136/bmj.l1451
Suksatan W, Moradi S, Naeini F, Bagheri R, Mohammadi H, Talebi S, et al. Ultra-Processed Food Consumption and Adult Mortality Risk: A Systematic Review and Dose–Response Meta-Analysis of 207,291 Participants. Nutrients. Multidisciplinary Digital Publishing Institute; 2022;14(1):174. DOI: 10.3390/nu14010174
Petersen T, Hirsch S. Comparing meat and meat alternatives: an analysis of nutrient quality in five European countries. Public Health Nutr. 26(12):3349‑58. DOI: 10.1017/S1368980023001945
Nagel G, Zoller D, Ruf T, Rohrmann S, Linseisen J. Long-term reproducibility of a food-frequency questionnaire and dietary changes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. Br J Nutr. 2007;98(1):194‑200. DOI: 10.1017/S0007114507691636
Lemieux I, Després J-P. Metabolic Syndrome: Past, Present and Future. Nutrients. 2020;12(11):3501. DOI: 10.3390/nu12113501
Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014;43(1):1‑23. DOI: 10.1016/j.ecl.2013.09.009
Thompson FE, Subar AF. Chapter 1 - Dietary Assessment Methodology. Dans: Coulston AM, Boushey CJ, Ferruzzi MG, Delahanty LM, directeurs. Nutrition in the Prevention and Treatment of Disease (Fourth Edition). Academic Press; 2017. DOI: 10.1016/B978-0-12-802928-2.00001-1
[En ligne]. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection | Public Health Nutrition | Cambridge Core [cité le 9 mars 2024]. Disponible: https://www.cambridge.org/core/journals/public-healthnutrition/article/european-prospective-investigation-into-cancer-and-nutrition-epic-studypopulations-and-datacollection/54B10DAB1C70CE6A666E82122D2421D8