NODDI; diffusion imaging; sleep; spatial navigation; structural; Young Adult; Humans; Diffusion Tensor Imaging/methods; Neurites; Diffusion Magnetic Resonance Imaging/methods; Hippocampus/diagnostic imaging; Brain; Spatial Navigation; White Matter; Diffusion Magnetic Resonance Imaging; Diffusion Tensor Imaging; Hippocampus; Cellular and Molecular Neuroscience
Abstract :
[en] Evidence for sleep-dependent changes in microstructural neuroplasticity remains scarce, despite the fact that it is a mandatory correlate of the reorganization of learning-related functional networks. We investigated the effects of post-training sleep on structural neuroplasticity markers measuring standard diffusion tensor imaging (DTI), mean diffusivity (MD), and the revised biophysical neurite orientation dispersion and density imaging (NODDI), free water fraction (FWF), and neurite density (NDI) parameters that enable disentangling whether MD changes result from modifications in neurites or in other cellular components (e.g., glial cells). Thirty-four healthy young adults were scanned using diffusion-weighted imaging (DWI) on Day1 before and after 40-min route learning (navigation) in a virtual environment, then were sleep deprived (SD) or slept normally (RS) for the night. After recovery sleep for 2 nights, they were scanned again (Day4) before and after 40-min route learning (navigation) in an extended environment. Sleep-related microstructural changes were computed on DTI (MD) and NODDI (NDI and FWF) parameters in the cortical ribbon and subcortical hippocampal and striatal regions of interest (ROIs). Results disclosed navigation learning-related decreased DWI parameters in the cortical ribbon (MD, FWF) and subcortical (MD, FWF, NDI) areas. Post-learning sleep-related changes were found at Day4 in the extended learning session (pre- to post-relearning percentage changes), suggesting a rapid sleep-related remodeling of neurites and glial cells subtending learning and memory processes in basal ganglia and hippocampal structures.
Disciplines :
Neurosciences & behavior
Author, co-author :
Villemonteix, Thomas ; UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Laboratoire Psychopathologie et Processus de Changement, EA2027, Paris 8 University, Saint-Denis, France
Guerreri, Michele; Department of Computer Science & Centre for Medical Image Computing, University College London, London, UK
Deantoni, Michele ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte ; UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
Balteau, Evelyne ; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Schmidt, Christina ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte
Stee, Whitney; UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
Zhang, Hui; Department of Computer Science & Centre for Medical Image Computing, University College London, London, UK
Peigneux, Philippe ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalidation cognitive ; UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
Language :
English
Title :
Sleep-dependent structural neuroplasticity after a spatial navigation task: A diffusion imaging study.
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This study was supported by the Fonds de la Recherche Scientifique (F.R.S.‐F.N.R.S.) and the Fonds Wetenschappelijk Onderzoek – Vlaanderen (F.W.O.) under the Excellence of Science (EOS) Project (MEMODYN, No. 30446199) coordinated by P.P. W.S. is supported by an F.N.R.S. Aspirant Research Fellowship. M.G. received postdoctoral salary support from the EOS MEMODYN project. At the time of the study, T.V. was funded by an Université Libre de Bruxelles (ULB) Individual Fellowship. M.D. is supported by the Fonds pour la Recherche dans l'Industrie et l'Agriculture (FRIA) Fellowship. C.S. is FNRS Research Associate. The authors have no conflict of interest to declare.
Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage, 20(2), 870–888. https://doi.org/10.1016/S1053-8119(03)00336-7
Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019
Assaf, Y. (2018). New dimensions for brain mapping. Science, 362(6418), 994–995. https://doi.org/10.1126/science.aav7357
Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111(3), 209–219. https://doi.org/10.1006/jmrb.1996.0086
Bernardi, G., Cecchetti, L., Siclari, F., Buchmann, A., Yu, X., Handjaras, G., Bellesi, M., Ricciardi, E., Kecskemeti, S. R., Riedner, B. A., Alexander, A. L., Benca, R. M., Ghilardi, M. F., Pietrini, P., Cirelli, C., & Tononi, G. (2016). Sleep reverts changes in human gray and white matter caused by wake-dependent training. NeuroImage, 129, 367–377. https://doi.org/10.1016/j.neuroimage.2016.01.020
Binder, S., Mölle, M., Lippert, M., Bruder, R., Aksamaz, S., Ohl, F., Wiegert, J. S., & Marshall, L. (2019). Monosynaptic hippocampal-prefrontal projections contribute to spatial memory consolidation in mice. The Journal of Neuroscience, 39(35), 6978–6991. https://doi.org/10.1523/JNEUROSCI.2158-18.2019
Blumenfeld-Katzir, T., Pasternak, O., Dagan, M., & Assaf, Y. (2011). Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One, 6(6), e20678. https://doi.org/10.1371/journal.pone.0020678
Born, J., & Wilhelm, I. (2012). System consolidation of memory during sleep. Psychological Research, 76(2), 192–203. https://doi.org/10.1007/s00426-011-0335-6
Brodt, S., Gais, S., Beck, J., Erb, M., Scheffler, K., & Schönauer, M. (2018). Fast track to the neocortex: A memory engram in the posterior parietal cortex. Science, 362(6418), 1045–1048. https://doi.org/10.1126/science.aau2528
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213. https://doi.org/10.1016/0165-1781(89)90047-4
Buzsáki, G. (1998). Memory consolidation during sleep: A neurophysiological perspective. Journal of Sleep Research, 7 Suppl 1, 17–23. https://doi.org/10.1046/j.1365-2869.7.s1.3.x
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395
Deantoni, M., Villemonteix, T., Balteau, E., Schmidt, C., & Peigneux, P. (2021). Post-training sleep modulates topographical relearning-dependent resting state activity. Brain Sciences, 11(4), 476. https://doi.org/10.3390/brainsci11040476
Do, T.-T. N., Lin, C.-T., & Gramann, K. (2021). Human brain dynamics in active spatial navigation. Scientific Reports, 11(1), 13036. https://doi.org/10.1038/s41598-021-92246-4
Ellis, B. W., Johns, M. W., Lancaster, R., Raptopoulos, P., Angelopoulos, N., & Priest, R. G. (1981). The St. Mary's Hospital sleep questionnaire: A study of reliability. Sleep, 4(1), 93–97. https://doi.org/10.1093/sleep/4.1.93
Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504–1513. https://doi.org/10.1038/nn.4656
Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055. https://doi.org/10.1073/pnas.200033797
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355. https://doi.org/10.1016/s0896-6273(02)00569-x
Fischl, B., Salat, D. H., van der Kouwe, A. J. W., Makris, N., Ségonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23 Suppl 1, S69–S84. https://doi.org/10.1016/j.neuroimage.2004.07.016
Fukutomi, H., Glasser, M. F., Zhang, H., Autio, J. A., Coalson, T. S., Okada, T., Togashi, K., Van Essen, D. C., & Hayashi, T. (2018). Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. NeuroImage, 182, 488–499. https://doi.org/10.1016/j.neuroimage.2018.02.017
Gahnstrom, C., & Spiers, H. (2020). Striatal and hippocampal contributions to flexible navigation in rats and humans. Brain and Neuroscience Advances, 4, 2398212820979772. https://doi.org/10.1177/2398212820979772
Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., & Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proceedings of the National Academy of Sciences, 104(47), 18778–18783. https://doi.org/10.1073/pnas.0705454104
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., Jenkinson, M., & WU-Minn HCP Consortium. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127
Guerreri, M., Szczepankiewicz, F., Lampinen, B., Nilsson, M., Palombo, M., Capuani, S., & Zhang, H. (2018). Revised NODDI model for diffusion MRI data with multiple b-tensor encodings, International Society for Magnetic Resonance in Medicine. https://discovery.ucl.ac.uk/id/eprint/10082897/
Guerreri, M., Szczepankiewicz, F., Lampinen, B., Nilsson, M., Palombo, M., & Zhang, H. (2020). Tortuosity assumption not the cause of NODDI's incompatibility with tensor-valued diffusion encoding, International Society for Magnetic Resonance in Medicine. Sydney, Australia. https://discovery.ucl.ac.uk/id/eprint/10082897/
Guerreri, M., Villemonteix, T., Stee, W., Balteau, E., Peigneux, P., & Zhang, H. (2021). Quantifying tissue microstructural changes associated with short-term learning using model-based diffusion MRI. International Society for Magnetic Resonance in Medicine. https://discovery.ucl.ac.uk/id/eprint/10082897/
Harland, B., Contreras, M., & Fellous, J.-M. (2017). A role for the longitudinal axis of the hippocampus in multiscale representations of large and complex spatial environments and mnemonic hierarchies. In A. Stuchlik (ed), The hippocampus—Plasticity and functions. IntechOpen. https://doi.org/10.5772/intechopen.71165
Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. International Journal of Chronobiology, 4(2), 97–110.
Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., Roy, N., Frosch, M. P., McKee, A. C., Wald, L. L., Fischl, B., Van Leemput, K., & Alzheimer's Disease Neuroimaging Initiative. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 115, 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042
Jelescu, I. O., Veraart, J., Fieremans, E., & Novikov, D. S. (2016). Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR in Biomedicine, 29(1), 33–47. https://doi.org/10.1002/nbm.3450
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015
Keller, T. A., & Just, M. A. (2016). Structural and functional neuroplasticity in human learning of spatial routes. NeuroImage, 125, 256–266. https://doi.org/10.1016/j.neuroimage.2015.10.015
Ólafsdóttir, H. F., Bush, D., & Barry, C. (2018). The role of hippocampal replay in memory and planning. Current Biology, 28(1), R37–R50. https://doi.org/10.1016/j.cub.2017.10.073
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
Orban, P., Rauchs, G., Balteau, E., Degueldre, C., Luxen, A., Maquet, P., & Peigneux, P. (2006). Sleep after spatial learning promotes covert reorganization of brain activity. Proceedings of the National Academy of Sciences of the United States of America, 103(18), 7124–7129. https://doi.org/10.1073/pnas.0510198103
Peigneux, P., Laureys, S., Fuchs, S., Collette, F., Perrin, F., Reggers, J., Phillips, C., Degueldre, C., Del Fiore, G., Aerts, J., Luxen, A., & Maquet, P. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535–545. https://doi.org/10.1016/j.neuron.2004.10.007
Peigneux, P., Orban, P., Balteau, E., Degueldre, C., Luxen, A., Laureys, S., & Maquet, P. (2006). Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biology, 4(4), e100. https://doi.org/10.1371/journal.pbio.0040100
Rasch, B., & Born, J. (2013). About sleep's role in memory. Physiological Reviews, 93(2), 681–766. https://doi.org/10.1152/physrev.00032.2012
Rauchs, G., Orban, P., Balteau, E., Schmidt, C., Degueldre, C., Luxen, A., Maquet, P., & Peigneux, P. (2008). Partially segregated neural networks for spatial and contextual memory in virtual navigation. Hippocampus, 18(5), 503–518. https://doi.org/10.1002/hipo.20411
Rauchs, G., Orban, P., Schmidt, C., Albouy, G., Balteau, E., Degueldre, C., Schnackers, C., Sterpenich, V., Tinguely, G., Luxen, A., Maquet, P., & Peigneux, P. (2008). Sleep modulates the neural substrates of both spatial and contextual memory consolidation. PLoS One, 3(8), e2949. https://doi.org/10.1371/journal.pone.0002949
Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084
Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: New insights into neuroplasticity. Neuron, 73(6), 1195–1203. https://doi.org/10.1016/j.neuron.2012.01.025
Schott, B. H., Wüstenberg, T., Lücke, E., Pohl, I.-M., Richter, A., Seidenbecher, C. I., Pollmann, S., Kizilirmak, J. M., & Richardson-Klavehn, A. (2019). Gradual acquisition of visuospatial associative memory representations via the dorsal precuneus. Human Brain Mapping, 40(5), 1554–1570. https://doi.org/10.1002/hbm.24467
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23 Suppl 1, S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051
Stee, W., & Peigneux, P. (2021). Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochemical Pharmacology, 191, 114369. https://doi.org/10.1016/j.bcp.2020.114369
Tavor, I., Botvinik-Nezer, R., Bernstein-Eliav, M., Tsarfaty, G., & Assaf, Y. (2020). Short-term plasticity following motor sequence learning revealed by diffusion magnetic resonance imaging. Human Brain Mapping, 41(2), 442–452. https://doi.org/10.1002/hbm.24814
Tavor, I., Hofstetter, S., & Assaf, Y. (2013). Micro-structural assessment of short term plasticity dynamics. NeuroImage, 81, 1–7. https://doi.org/10.1016/j.neuroimage.2013.05.050
Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908
Urbain, C., De Tiège, X., Op De Beeck, M., Bourguignon, M., Wens, V., Verheulpen, D., Van Bogaert, P., & Peigneux, P. (2016). Sleep in children triggers rapid reorganization of memory-related brain processes. NeuroImage, 134, 213–222. https://doi.org/10.1016/j.neuroimage.2016.03.055
Wamsley, E. J. (2019). Memory consolidation during waking rest. Trends in Cognitive Sciences, 23(3), 171–173. https://doi.org/10.1016/j.tics.2018.12.007
Wikenheiser, A. M., Gardner, M. P. H., Mueller, L. E., & Schoenbaum, G. (2021). Spatial representations in rat orbitofrontal cortex. The Journal of Neuroscience, 41(32), 6933–6945. https://doi.org/10.1523/JNEUROSCI.0830-21.2021
Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. M. (2009). Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(1 Suppl), S173–S186. https://doi.org/10.1016/j.neuroimage.2008.10.055
Wunderlich, K., Dayan, P., & Dolan, R. J. (2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15(5), 786–791. https://doi.org/10.1038/nn.3068
Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Jones, T., & Zuo, Y. (2009). Rapid formation and selective stabilization of synapses for enduring motor memories. Nature, 462(7275), 915–919. https://doi.org/10.1038/nature08389
Yushkevich, P. A., Avants, B. B., Das, S. R., Pluta, J., Altinay, M., Craige, C., & Alzheimer's Disease Neuroimaging Initiative. (2010). Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3 T MRI data. NeuroImage, 50(2), 434–445. https://doi.org/10.1016/j.neuroimage.2009.12.007
Zhang, H., Avants, B. B., Yushkevich, P. A., Woo, J. H., Wang, S., McCluskey, L. F., Elman, L. B., Melhem, E. R., & Gee, J. C. (2007, November). High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: An example study using amyotrophic lateral sclerosis. IEEE Transactions on Medical Imaging, 26(11), 1585–1597. https://doi.org/10.1109/TMI.2007.906784
Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage, 61(4), 1000–1016. https://doi.org/10.1016/j.neuroimage.2012.03.072
Theodosis, D. T., Poulain, D. A., & Oliet, S. H. (2008). Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev, 88(3), 983-1008.