(disorders of) consciousness; anaesthesia; animal models; brain states; neuromodulation; Neurology; Psychiatry and Mental Health; Cellular and Molecular Neuroscience; Biological Psychiatry
Abstract :
[en] Experimental and clinical studies of consciousness identify brain states (i.e. quasi-stable functional cerebral organization) in a non-systematic manner and largely independent of the research into brain state modulation. In this narrative review, we synthesize advances in the identification of brain states associated with consciousness in animal models and physiological (sleep), pharmacological (anaesthesia) and pathological (disorders of consciousness) states of altered consciousness in humans. We show that in reduced consciousness the frequencies in which the brain operates are slowed down and that the pattern of functional communication is sparser, less efficient, and less complex. The results also highlight damaged resting-state networks, in particular the default mode network, decreased connectivity in long-range connections and especially in the thalamocortical loops. Next, we show that therapeutic approaches to treat disorders of consciousness, through pharmacology (e.g. amantadine, zolpidem), and (non-) invasive brain stimulation (e.g. transcranial direct current stimulation, deep brain stimulation) have shown partial effectiveness in promoting consciousness recovery. Although some features of conscious brain states may improve in response to neuromodulation, targeting often remains non-specific and does not always lead to (behavioural) improvements. The fields of brain state identification and neuromodulation of brain states in relation to consciousness are showing fascinating developments that, when integrated, might propel the development of new and better-targeted techniques for disorders of consciousness. We here propose a therapeutic framework for the identification and modulation of brain states to facilitate the interaction between the two fields. We propose that brain states should be identified in a predictive setting, followed by theoretical and empirical testing (i.e. in animal models, under anaesthesia and in patients with a disorder of consciousness) of neuromodulation techniques to promote consciousness in line with such predictions. This framework further helps to identify where challenges and opportunities lay for the maturation of brain state research in the context of states of consciousness. It will become apparent that one angle of opportunity is provided through the addition of computational modelling. Finally, it aids in recognizing possibilities and obstacles for the clinical translation of these diagnostic techniques and neuromodulation treatment options across both the multimodal and multi-species approaches outlined throughout the review.
Casas-Torremocha, Diana; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Barcelona 08036, Spain
Manasanch, Arnau; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Barcelona 08036, Spain
Dalla Porta, Leonardo; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Barcelona 08036, Spain
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Alnagger, Naji ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Barra, Alice ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Mejías, Jorge F; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
Panda, Rajanikant ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Riefolo, Fabio; Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
Thibaut, Aurore ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Bonhomme, Vincent ; Université de Liège - ULiège > Département des sciences cliniques > Anesthésie et réanimation
Thirion, Bertrand; Inria, CEA, Université Paris-Saclay, Paris 91120, France
Clasca, Francisco; Department of Anatomy and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
Gorostiza, Pau; Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
Sanchez-Vives, Maria V ; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Barcelona 08036, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
Deco, Gustavo; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain ; Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018, Spain
Laureys, Steven ; Université de Liège - ULiège > Département des sciences cliniques ; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University of Laval, Quebec G1J 2G3, Canada ; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou 311121, China
Zamora-López, Gorka; Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018, Spain
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group ; Department of Data Analysis, University of Ghent, Ghent B9000, Belgium
ULiège - University of Liège Bial Foundation EU - European Union NSCF - National Natural Science Foundation of China MICINN - Ministerio de Ciencia e Innovacion AEI - Agencia Estatal de Investigación La Caixa Foundation CHU Liège - Central University Hospital of Liege F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
NA is research fellow, OG and AT are Research Associates, and SL is the research director at Fonds de la Recherche Scientifique (FRS-FNRS). JA is a postdoctoral fellow at the Fonds voor Wetenschappelijk Onderzoek (FWO) (1265522N). The study was further supported by the University and University Hospital of Li\u00E8ge, the BIAL Foundation, the Belgian National Funds for Scientific Research (FRS-FNRS), the European Union\u2019s Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the FNRS PDR project (T.0134.21), the ERA-Net FLAG-ERA JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project), the fund Generet, the King Baudouin Foundation, the T\u00E9l\u00E9vie Foundation, the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PROgramme de D\u00E9veloppement d'Exp\u00E9riences scientifiques (PRODEX Programme), the Public Utility Foundation \u2018Universit\u00E9 Europ\u00E9enne du Travail\u2019, \u2018Fondazione Europea di Ricerca Biomedica\u2019, the BIAL Foundation, the Mind Science Foundation, the European Commission, the Fondation Leon Fredericq, the Mind-Care foundation, the DOCMA project (EU-H2020-MSCA\u2013RISE\u2013778234), the National Natural Science Foundation of China (Joint Research Project 81471100) and the European Foundation of Biomedical Research (FERB Onlus). EU grants ICT-36-2020-101016787 (DEEPER), EIC Pathfinder GAP-101130883 (PHOTOTHERAPORT), and -EIC-2023-PATHFINDEROPEN-101130650 (META-BRAIN), Government of Catalonia AGAUR [Centres de Recerca de Catalunya (CERCA) Programme, 2021-SGR-01410; AGAUR 2021-SGR-01165 - NEUROVIRTUAL], Ministerio de Ciencia e Innovaci\u00F3n (MICINN) grants PID2019-111493RB-I00 (DEEP RED) and PID2022- 142609OB-I00 (EPILLUM), PID2020-112947RB-I00 financed by Ministerio de Ciencia e Innovaci\u00F3n (MCIN)/Agencia Estatal de Investigaci\u00F3n (AEI)/10.13039/501100011033 (CORTICOMOD), and Fundaluce and \u2018la Caixa\u2019 foundations (ID 100010434, agreement LCF/PR/HR19/52160010).NA is research fellow, OG and AT are Research Associates, and SL is the research director at Fonds de la Recherche Scientifique (FRS-FNRS). JA is a postdoctoral fellow at the Fonds voor Wetenschappelijk Onderzoek (FWO) (1265522N). The study was further supported by the University and University Hospital of Li\u00E8ge, the BIAL Foundation, the Belgian National Funds for Scientific Research (FRS-FNRS), the European Union's Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the FNRS PDR project (T.0134.21), the ERA-Net FLAG-ERA JTC2021 project ModelDX Consciousness (Human Brain Project Partnering Project), the fund Generet, the King Baudouin Foundation, the T\u00E9l\u00E9vie Foundation, the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PROgramme de D\u00E9veloppement d'Exp\u00E9riences scientifiques (PRODEX Programme), the Public Utility Foundation 'Universit\u00E9 Europ\u00E9enne du Travail', 'Fondazione Europea di Ricerca Biomedica', the BIAL Foundation, the Mind Science Foundation, the European Commission, the Fondation Leon Fredericq, the Mind-Care foundation, the DOCMA project (EU-H2020-MSCA-RISE-778234), the National Natural Science Foundation of China (Joint Research Project 81471100) and the European Foundation of Biomedical Research (FERB Onlus). EU grants ICT-36-2020-101016787 (DEEPER), EIC Pathfinder GAP101130883 (PHOTOTHERAPORT), and -EIC-2023-PATHF INDEROPEN-101130650 (META-BRAIN), Government of Catalonia AGAUR [Centres de Recerca de Catalunya (CERCA) Programme, 2021-SGR-01410; AGAUR 2021- SGR-01165 - NEUROVIRTUAL], Ministerio de Ciencia e Innovaci\u00F3n (MICINN) grants PID2019-111493RB-I00 (DEEP RED) and PID2022- 142609OB-I00 (EPILLUM), PID2020-112947RB-I00 financed by Ministerio de Ciencia e Innovaci\u00F3n (MCIN)/Agencia Estatal de Investigaci\u00F3n (AEI)/ 10.13039/501100011033 (CORTICOMOD), and Fundaluce and 'la Caixa' foundations (ID 100010434, agreement LCF/ PR/HR19/52160010).
Nagel T. What is it like to be a bat ? Philos Rev. 1974;83:435-450.
Deco G, Cruzat J, Cabral J, et al. Awakening: Predicting external stimulation to force transitions between different brain states. Proc Natl Acad Sci U S A. 2019;116(36):18088-18097.
Demertzi A, Tagliazucchi E, Dehaene S, et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci Adv. 2019;5:eaat7603.
Mensen A, Bodart O, Thibaut A, et al. Decreased evoked slow-activity after tDCS in disorders of consciousness. Front Syst Neurosci. 2020;14:62.
Thibaut A, Panda R, Annen J, et al. Preservation of brain activity in unresponsive patients identifies MCS star. Ann Neurol. 2021; 90(1):89-100.
Vinck M, Oostenveld R, Van Wingerden M, Battaglia FP, Pennartz CMA. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage. 2011;55(4):1548-1565.
Laureys S, Boly M, Moonen G, Maquet P. Two dimensions of consciousness: Arousal and awareness. In: Squire LR, Bloom FE, Spitzer NC, Gage F, Albright T, eds. Encyclopedia of neuroscience, Vol.2. Elsevier; 2009:1133-1142.
Cecconi B, Van Der Lande GJM, Sala A. Neural correlates of consciousness. In: Schnakers C, Laureys S, eds. Coma and disorders of consciousness. Springer; 2024:1-15. doi:https://doi.org/10.1007/ 978-3-031-50563-8_1
Koch C, Massimini M, Boly M, Tononi G. Neural correlates of consciousness: Progress and problems. Nat Rev Neurosci. 2016; 17(5):307-321.
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949; 1(1):455-473.
Monti MM, Rosenberg M, Finoia P, Kamau E, Pickard JD, Owen AM. Thalamo-frontal connectivity mediates top-down cognitive functions in disorders of consciousness. Neurology. 2015;84(2): 167-173.
Schiff ND. Recovery of consciousness after brain injury: A mesocircuit hypothesis. Trends Neurosci. 2010;33(1):1-9.
Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci. 2013;33(27):11239-11252.
Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: The state of the science. Nat Rev Neurol. 2014;10(2):99-114.
Laureys S, Owen AM, Schiff ND. Brain function in brain death, coma, vegetative state, minimally conscious state and locked-in syndrome. Lancet Neurol. 2004;3(9):537-546.
Van Erp WS, Lavrijsen JCM, Vos PE, Bor H, Laureys S, Koopmans TCM. The vegetative state: Prevalence, misdiagnosis, and treatment limitations. J Am Med Dir Assoc. 2015;16(1):e9-85.e14.
Pisa F, Biasutti E, Drigo D, Barbone F. The prevalence of vegetative and minimally conscious states: A systematic review and methodological appraisal. J Head Trauma Rehabil. 2014;29(4):E23-EE30.
Klingshirn H, Mittrach R, Braitmayer K, et al. RECAPDOC - A questionnaire for the documentation of rehabilitation care utilization in individuals with disorders of consciousness in long-term care in Germany: Development and pretesting. BMC Health Serv Res. 2018;18(329):1-9.
Donis J, Kräftner B. The prevalence of patients in a vegetative state and minimally conscious state in nursing homes in Austria. Brain Inj. 2011;25(11):1101-1107.
Lavrijsen JCM, Koopmans RTCM, Van Weel C. Prevalence and characteristics of patients in a vegetative state in Dutch nursing homes. J Neurol Neurosurg Psychiatry. 2005;76(10):1420-1424.
Beaumont JG, Kenealy PM. Incidence and prevalence of the vegetative and minimally conscious states. Neuropsychol Rehabil. 2011;15(3):184-189.
Saout V, Ombredane M-P, Mouille J-M, Marteau C, Mathe J-F, Richard I. Patients in a permanent vegetative state or minimally conscious state in the Maine-et-Loire county of France: A cross-sectional, descriptive study situation des patients en état végétatif chronique et en état paucirelationnel en. Ann or Phys Rehabil Med. 2010;53:96-104.
Kondziella D, Amiri M, Othman MH, et al. Incidence and prevalence of coma in the UK and the USA. Brain Commun. 2022;4(5): fcac188.
Laureys S, Celesia GG, Cohadon F, et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010;8:68.
Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state. Neurology. 2002;58:349-354.
Thibaut A, Bodien YG, Laureys S, Giacino JT. Minimally conscious state “plus”: Diagnostic criteria and relation to functional recovery. J Neurol. 2020;267(5):1245-1254.
Edlow BL, Chatelle C, Spencer CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain. 2017;140:2399-2414.
Young MJ, Fecchio M, Bodien YG, Edlow BL. Covert cortical processing: A diagnosis in search of a definition. Neurosci Conscious. 2024;2024(1):niad026.
Claassen J, Kondziella D, Alkhachroum A, et al. Cognitive motor dissociation: Gap analysis and future directions. Neurocrit Care. 2024;40(1):81-98.
Meys M, Thibaut A, Annen J. Brain – computer interfaces and their place in the management of disorders of consciousness of consciousness. In: Schnakers C, Laureys S, eds. Coma and disorders of consciousness. Springer; 2024:35-57.
Voss HU, Ulŭ g AM, Dyke JP, et al. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest. 2006;116(7):2005-2011.
Faugeras F, Rohaut B, Valente M, et al. Survival and consciousness recovery are better in the minimally conscious state than in the vegetative state. Brain Inj. 2018;32(1):72-77.
Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: Measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85(12):2020-2029.
Wannez S, Heine L, Thonnard M, Gosseries O, Laureys S. The repetition of behavioral assessments in diagnosis of disorders of consciousness. Ann Neurol. 2017;81(6):883-889.
Kondziella D, Bender A, Diserens K, et al. European academy of neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27(5):741-756.
Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876-880.
Gao Y, Ma Y, Zhang Q, Winder AT, Liang Z. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage. 2017;153: 382-398.
Lee U, Arbor A, Ku S, et al. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology. 2013;118(6):1264-1275.
Mashour GA. Neuroscience and biobehavioral reviews cognitive unbinding: A neuroscientific paradigm of general anesthesia and related states of unconsciousness. Neurosci Biobehav Rev. 2013; 37(10):2751-2759.
Barra A, Monti MM, Thibaut A. Noninvasive brain stimulation therapies to promote recovery of consciousness: Where we are and where we should go. Semin Neurol. 2022;42:348-362.
Kundu B, Brock AA, Englot DJ, Butson CR, Rolston JD. Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: A review. Neurosurg Focus. 2018;45(2):E14.
Redinbaugh MJ, Phillips JM, Kambi NA, et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron. 2020;106(1):66-75.
Morales DM, Marklund N, Lebold D, et al. Experimental models of traumatic brain injury: Do we really need to build a better mousetrap? Neuroscience. 2005;136(4):971-989.
Pais-Roldán P, Edlow BL, Jiang Y, Stelzer J, Zou M, Yu X. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage. 2019; 189(January):615-630.
Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56-92.
Bronstein JM, Tagliati M, Alterman RL, et al. Deep brain stimulation for Parkinson disease an expert consensus and review of key issues. Arch Neurol. 2011;68(2):165-171.
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends Neurosci. 2023; 46(7):508-524.
Demertzi A, Ledoux D, Bruno MA, et al. Attitudes towards end-of-life issues in disorders of consciousness: A European survey. J Neurol. 2011;258(6):1058-1065.
Chatelle C, Thibaut A, Whyte J, De Val MD, Laureys S, Schnakers C. Pain issues in disorders of consciousness. Brain Inj. 2014;28(9): 1202-1208.
Thibaut A, Schiff N, Giacino JT, Laureys S, Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019;18(6):600-614.
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: Mechanisms, prognosis and emerging therapies. Nat Rev Neurol. 2021;17(3):135-156.
Simon CW, Emmons WH. Responses to material presented during various levels of sleep. J Exp Psychol. 1956;51(2):89-97.
Rosenberg GA, Johnson SF, Brenner RP. Recovery of cognition after prolonged vegetative state. Ann Neurol. 1977;2(2):167-168.
Frohlich J, Toker D, Monti MM. Consciousness among delta waves: A paradox? Brain. 2021;144(8):2257-2277.
Wascher E, Rasch B, Sänger J, et al. Frontal theta activity reflects distinct aspects of mental fatigue. Biol Psychol. 2014; 96(1):57-65.
Zhao G, Wu C, Ou B. The electrocortical correlates of daydreaming during simulated driving tasks. Proc Hum FACTORS Ergon Soc 57th Annu Meet. 2013;57:1904-1908.
Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16(12):606-617.
Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front Hum Neurosci. 2010;4(November):186.
Kaplan PW, Genoud D, Ho TW, Jallon P. Etiology, neurologic correlations, and prognosis in alpha coma. Clin Neurophysiol. 1999; 110:205-213.
Annen J, Frasso G, van der Lande GJM, et al. Cerebral electrometabolic coupling in disordered and normal states of consciousness. Cell Rep. 2023;42(8):112854.
Uhlhaas PJ, Haenschel C, Nikolić D, Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull. 2008;34(5):927-943.
Wang XJ. Neurophysiological and computational principles of corticalrhythmsincognition.PhysiolRev.2010;90(3):1195-1268.
Bosman CA, Lansink CS, Pennartz CMA. Functions of gamma-band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci. 2014;39(11):1982-1999.
Engemann DA, Raimondo F, King JR, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018;141(11):3179-3192.
Schiff ND. Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: Model and predictions. In: Monti MM, Sannita WG, eds. Brain Function and Responsiveness in Disorders of Consciousness. Springer International Publishing; 2016:195-204. doi:10.1007/978-3-319-21425-2_15
Frohlich J, Crone JS, Johnson MA, et al. Neural oscillations track recovery of consciousness in acute traumatic brain injury patients. Hum Brain Mapp. 2022;43(6):1804-1820.
Forgacs PB, Frey HP, Velazquez A, et al. Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann Clin Transl Neurol. 2017;4(2):119-129.
Chennu S, Annen J, Wannez S, et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. 2017;140(8):2120-2132.
Thibaut A, Chennu S, Chatelle C, et al. Theta network centrality correlates with tDCS response in disorders of consciousness. Brain Stimul. 2018;11(6):1407-1409.
Sitt JD, King JR, El Karoui I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137(8):2258-2270.
Rizkallah J, Annen J, Modolo J, et al. Clinical decreased integration of EEG source-space networks in disorders of consciousness. NeuroImage Clin. 2019;23:101841.
Changeux J-P, Michel CM. Mechanisms of neural integration at the brain-scale level: The neuronal workspace and microstate models. In: Grillner S, Graybiel AM, eds. Microcircuits: The Interface Between Neurons and Global Brain Function. 1st ed. MIT Press; 2004:347-370.
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states. Conscious Cogn. 2012;21(1):149-169.
Stefan S, Schorr B, Lopez-Rolon A, et al. Consciousness indexing and outcome prediction with resting-state EEG in severe disorders of consciousness. Brain Topogr. 2018;31(5):848-862.
Demertzi A, Soddu A, Laureys S. Consciousness supporting networks. Curr Opin Neurobiol. 2013;23(2):239-244.
Heine L, Soddu A, Gómez F, et al. Resting state networks and consciousness alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Front Psychol. 2012;3:295.
Amico E, Marinazzo D, Di Perri C, et al. Mapping the functional connectome traits of levels of consciousness. Neuroimage. 2017; 148:201-211.
Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci U S A. 2014;111(17):6473-6478.
Cao B, Chen Y, Yu R, et al. Abnormal dynamic properties of functional connectivity in disorders of consciousness. NeuroImage Clin. 2019;24:102071.
Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(9):2619-2631.
López-González A, Panda R, Ponce-Alvarez A, et al. Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Commun Biol. 2021;4(1):1037.
Luppi AI, Craig MM, Pappas I, et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat Commun. 2019;10(1):4616.
Golkowski D, Willnecker R, Rösler J, et al. Dynamic patterns of global brain communication differentiate conscious from unconscious patients after severe brain injury. Front Syst Neurosci. 2021;15:625919.
Panda R, Thibaut A, Lopez-Gonzalez A, et al. Disruption in structural–functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. Elife. 2022;11:1-19.
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: Part I: Background and basic signatures. Anesthesiology. 2015;123(4):937-960.
Brown EN, Pavone KJ, Naranjo M. Multimodal general anesthesia: Theory and practice. Anesth Analg. 2018;127(5): 1246-1258.
Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5(9):709-720.
Van Dort CJ, Baghdoyan HA, Lydic R. Neurochemical modulators of sleep and anesthetic states. Int Anesthesiol Clin. 2008; 46(3):75-104.
Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: A systems neuroscience analysis. Annu Rev Neurosci. 2011;34:601-628.
Steinberg EA, Wafford KA, Brickley SG, Franks NP, Wisden W. The role of K2P channels in anaesthesia and sleep. Pflugers Arch Eur J Physiol. 2015;467(5):907-916.
Franks NP. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008; 9(5):370-386.
Huupponen E, Maksimow A, Lapinlampi P, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008; 52(2):289-294.
Sattin D, Duran D, Visintini S, et al. Analyzing the loss and the recovery of consciousness: Functional connectivity patterns and changes in heart rate variability during propofol-induced anesthesia. Front Syst Neurosci. 2021;15:652080.
Lewis LD, Piantoni G, Peterfreund RA, et al. A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans. Elife. 2018;7:e33250.
Ordek G, Groth JD, Sahin M. Differential effects of ketamine/xylazine anesthesia on the cerebral and cerebellar cortical activities in the rat. J Neurophysiol. 2013;109(5):1435-1443.
Pal D, Silverstein BH, Lee H, Mashour GA. Neural correlates of wakefulness, sleep, and general anesthesia: An experimental study in rat. Anesthesiology. 2016;125(5):929-942.
Boly M, Moran R, Murphy M, et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci. 2012;32(20):7082-7090.
Guldenmund P, Demertzi A, Boveroux P, et al. Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connect. 2013;3(3):273-285.
Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Gröhn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage. 2018;172:9-20.
Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol. 2014;122:24-44.
Boveroux P, Vanhaudenhuyse A, Bruno M-A, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology. 2010;113(5):1038-1053.
Grandjean J, Schroeter A, Batata I, Rudin M. Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage. 2014;102:838-847.
Guldenmund P, Vanhaudenhuyse A, Sanders RD, et al. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br J Anaesth. 2017;119(4):674-684.
Li D, Mashour GA. Cortical dynamics during psychedelic and anesthetized states induced by ketamine. Neuroimage. 2019;196:32-40.
Demertzi A, Sitt JD, Sarasso S, Pinxten W. Measuring states of pathological (un)consciousness: Research dimensions, clinical applications, and ethics. Neurosci Conscious. 2017;2017(1):nix010.
Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363(27):2638-2650.
Song X-J, Hu J-J. Neurobiological basis of emergence from anesthesia. Trends Neurosci. 2024;47(5):355-366.
Sanders RD, Gaskell A, Raz A, et al. Incidence of connected consciousness after tracheal intubation. Anesthesiology. 2017; 126(2):214-222.
Lennertz R, Pryor KO, Raz A, et al. Connected consciousness after tracheal intubation in young adults: An international multicentre cohort study. Br J Anaesth. 2023;130(2):e217-e224.
Montupil J, Cardone P, Staquet C, et al. The nature of consciousness in anaesthesia. Br J Anaesth Open. 2023;8:100224.
Cecconi B, Montupil J, Mortaheb S, et al. Study protocol: Cerebral characterization of sensory gating in disconnected dreaming states during propofol anesthesia using fMRI. Front Neurosci. 2024;18:1306344.
Calderon DP, Schiff ND. Objective and graded calibration of recovery of consciousness in experimental models. Curr Opin Neurol. 2021;34(1):142-149.
Dasilva M, Camassa A, Navarro-Guzman A, et al. Modulation of cortical slow oscillations and complexity across anesthesia levels. Neuroimage. 2021;224:117415.
Torao-Angosto M, Manasanch A, Mattia M, Sanchez-Vives M V. Up and down states during slow oscillations in slow-wave sleep and different levels of anesthesia. Front Syst Neurosci. 2021;15: 609645.
Bastos AM, Donoghue JA, Brincat SL, et al. Neural effects of propofol-induced unconsciousness and its reversal using thalamic stimulation. Elife. 2021;10:e60824.
Bettinardi RG, Tort-colet N, Ruiz-mejias M, Sanchez-vives MV, Deco G. Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials. Neuroimage. 2015;114:185-198.
Tort-Colet N, Capone C, Sanchez-Vives MV, Mattia M. Attractor competition enriches cortical dynamics during awakening from anesthesia. Cell Rep. 2021;35(12):109270.
Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B. Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci U S A. 2015;112(3):887-8892.
Ming Q, Liou JY, Yang F, et al. Isoflurane-Induced burst suppression is a thalamus-modulated, focal-onset rhythm with persistent local asynchrony and Variable propagation patterns in rats. Front Syst Neurosci. 2021;14:599781.
Assadzadeh S, Annen J, Sanz LRD, et al. Method for quantifying arousal and consciousness in healthy states and severe brain injury via EEG-based measures of corticothalamic physiology. J Neurosci Methods. 2023;398:109958.
Perl YS, Pallavicini C, Ipiña IP, et al. Perturbations in dynamical models of wholebrain activity dissociate between the level and stability of consciousness. PLoS Comput Biol. 2021;17(7):e1009139.
Tagliazucchi E, Chialvo DR, Siniatchkin M, et al. Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics. J R Soc Interface. 2016;13(114):20151027.
Hahn G, Zamora-López G, Uhrig L, et al. Signature of consciousness in brain-wide synchronization patterns of monkey and human fMRI signals. Neuroimage. 2021;226:117470.
Gaglioti G, Nieus TR, Massimini M, Sarasso S. Investigating the impact of local manipulations on spontaneous and evoked brain complexity indices: A large-scale computational model. Appl Sci. 2024;14(890):890.
Edlow BL, Sanz LRD, Polizzotto L, et al. Therapies to restore consciousness in patients with severe brain injuries: A gap analysis and future directions. Neurocrit Care. 2021;35:68-85.
Kang Y, Jamison K, Jaywant A, et al. Longitudinal alterations in gamma-aminobutyric acid (GABAA) receptor availability over ∼ 1 year following traumatic brain injury. Brain Commun. 2022; 4(4):fcac159.
Gosseries O, Martial C. The use of psychedelics in the treatment of disorders of consciousness: An interview of Olivia Gosseries. ALIUS Bull. 2020;4:50-66.
Giacino JT, Whyte J, Bagiella E, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819–8826.
Kim YW, Shin JC, An YS. Effects of methylphenidate on cerebral glucose metabolism in patients with impaired consciousness after acquired brain injury. Clin Neuropharmacol. 2009;32(6): 335-339.
Fridman EA, Krimchansky BZ, Bonetto M, et al. Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj. 2010;24(4):636-641.
Sanz LRD, Lejeune N, Blandiaux S, et al. Treating disorders of consciousness with apomorphine: Protocol for a double-blind randomized controlled trial using multimodal assessments. Front Neurol. 2019;10:248.
Whyte J, Rajan R, Rosenbaum A, et al. Zolpidem and restoration of consciousness. Am J Phys Med Rehabil. 2014;93(2):101-113.
Chatelle C, Thibaut A, Gosseries O, et al. Changes in cerebral metabolism in patients with a minimally conscious state responding to zolpidem. Front Hum Neurosci. 2014;8:917.
Meythaler JM, Brunner RC, Johnson A, Novack TA. Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: A pilot double-blind randomized trial. J Head Trauma Rehabil. 2002;17(4):300-313.
Ghalaenovi H, Fattahi A, Koohpayehzadeh J, et al. The effects of amantadine on traumatic brain injury outcome: A double-blind, randomized, controlled, clinical trial. Brain Inj. 2018;32(8): 1050-1055.
Szymkowicz E, Alnagger N, Seyfzadehdarabad F, Cardone P, Whyte J. O. G. Pharmacological treatments. In: Schnakers C, Laureys S, eds. Coma and disorders of consciousness. Springer; 2023:115-146.
Velema WA, Szymanski W, Feringa BL. Photopharmacology: Beyond proof of principle. J Am Chem Soc. 2014;136(6): 2178-2191.
Hüll K, Morstein J, Trauner D. In vivo photopharmacology. Chem Rev. 2018;118(21):10710-10747.
Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389-412.
Pinto L, Goard MJ, Estandian D, et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci. 2013;16(12):1857-1863.
Liu J, Lee HJ, Weitz AJ, et al. Frequency-selective control of cortical and subcortical networks by central thalamus. Elife. 2015; 4:e09215.
Broichhagen J, Frank JA, Trauner D. A roadmap to success in photopharmacology. Acc Chem Res. 2015;48(7):1947-1960.
Stein M, Middendorp SJ, Carta V, et al. Azo-propofols: Photochromic potentiators of GABAA receptors. Angew Chemie - Int Ed. 2012;51(42):10500-10504.
Yue L, Pawlowski M, Dellal SS, et al. Robust photoregulation of GABA A receptors by allosteric modulation with a propofol analogue. Nat Commun. 2012;3(1095):1095.
Schoenberger M, Damijonaitis A, Zhang Z, Nagel D, Trauner D. Development of a new photochromic ion channel blocker via azologization of fomocaine. ACS Chem Neurosci. 2014;5(7): 514-518.
Gomila AMJ, Rustler K, Maleeva G, et al. Photocontrol of endogenous glycine receptors in vivo. Cell Chem Biol. 2020; 27(11):1425-1433.e7.
Leippe P, Winter N, Sumser MP, Trauner D. Optical control of a delayed rectifier and a two-pore potassium channel with a photoswitchable bupivacaine. ACS Chem Neurosci. 2018;9(12): 2886-2891.
Prischich D, Gomila AMJ, Milla-Navarro S, et al. Adrenergic modulation with photochromic ligands. Angew Chemie - Int Ed. 2021;60(7):3625-3631.
Sansalone L, Bratsch-Prince J, Tang S, Captain B, Mott DD, Raymo FM. Photopotentiation of the GABAA receptor with caged diazepam. Proc Natl Acad Sci U S A. 2019;116(42):21176-21184.
Rustler K, Maleeva G, Gomila AMJ, Gorostiza P, Bregestovski P, König B. Optical control of GABAA receptors with a fulgimidebased potentiator. Chem - A Eur J. 2020;26(56):12722-12727.
Borghese CM, Wang HYL, McHardy SF, et al. Modulation of α1β3γ2 GABAA receptors expressed in X. laevis oocytes using a propofol photoswitch tethered to the transmembrane helix. Proc Natl Acad Sci U S A. 2021;118(8):e2008178118.
Barbero-Castillo A, Riefolo F, Matera C, et al. Control of brain state transitions with a photoswitchable muscarinic agonist. Adv Sci (Weinh). 2021;8(14):e2005027.
Riefolo F, Matera C, Garrido-Charles A, et al. Optical control of cardiac function with a photoswitchable muscarinic agonist. J Am Chem Soc. 2019;141(18):7628-7636.
Riefolo F, Sortino R, Matera C, et al. Rational design of photochromic analogues of tricyclic drugs. J Med Chem. 2021;64(13): 9259-9270.
Hansen ML, Hyttel-Sørensen S, Jakobsen JC, et al. The clinical effects of cerebral near-infrared spectroscopy monitoring (NIRS) versus no monitoring: A protocol for a systematic review with meta-analysis and trial sequential analysis. Syst Rev. 2021;10(1): 111.
Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR. Brain photobiomodulation therapy: A narrative review. Mol Neurobiol. 2018;55(8):6601-6636.
Castagna R, Maleeva G, Pirovano D, Matera C, Gorostiza P. Donor-acceptor Stenhouse adduct displaying reversible photoswitching in water and neuronal activity. J Am Chem Soc. 2022; 144(34):15595-15602.
Izquierdo-Serra M, Gascón-Moya M, Hirtz JJ, et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photo-switches. J Am Chem Soc. 2014;136(24):8693-8701.
Sortino R, Cunquero M, Castro-olvera G, et al. Three-photon infrared stimulation of endogenous neuroreceptors in vivo Angewandte. Angew Chemie - Int Ed Engl. 2023;62:e202311181.
Miron J-P, Jodoin VD, Lespérance P, Blumberger DM. Repetitive transcranial magnetic stimulation for major depressive disorder: Basic principles and future directions. Ther Adv Psychopharmacol. 2021;11:20451253211042696.
Liu P, Gao J, Pan S, et al. Effects of high-frequency repetitive transcranial magnetic stimulation on cerebral hemodynamics in patients with disorders of consciousness: A sham-controlled study. Eur Neurol. 2016;76(1–2):1-7.
Cincotta M, Giovannelli F, Chiaramonti R, et al. No effects of 20Hz-rTMS of the primary motor cortex in vegetative state: A randomised, sham-controlled study. Cortex. 2015;71:368-376.
He F, Wu M, Meng F, et al. Effects of 20Hz repetitive transcranial magnetic stimulation on disorders of consciousness: A resting-state electroencephalography study. Neural Plast. 2018;2018:5036184.
Liu X, Meng F, Gao J, et al. Behavioral and resting state functional connectivity effects of high frequency rTMS on disorders of consciousness: A sham-controlled study. Front Neurol. 2018;9:982.
Fan J, Zhong YH, Wang HJ, Aierken N, He R. Repetitive transcranial magnetic stimulation improves consciousness in some patients with disorders of consciousness. Clin Rehabil. 2022;36(7): 916-925.
He RH, Wang HJ, Zhou Z, Fan JZ, Zhang SQ, Zhong YH. The influence of high-frequency repetitive transcranial magnetic stimulation on endogenous estrogen in patients with disorders of consciousness. Brain Stimul. 2021;14(3):461-466.
Chen J-M, Chen Q-F, Wang Z-Y, et al. Influence of high-frequency repetitive transcranial magnetic stimulation on neurobehavioral and electrophysiology in patients with disorders of consciousness. Neural Plast. 2022;2022:7195699.
Legostaeva L, Poydasheva A, Iazeva E, et al. Stimulation of the angular gyrus improves the level of consciousness. Brain Sci. 2019; 9(5):103-117.
Xu C, Wu W, Zheng X, et al. Repetitive transcranial magnetic stimulation over the posterior parietal cortex improves functional recovery in nonresponsive patients: A crossover, randomized, double-blind, sham-controlled study. Front Neurol. 2023;14: 1059789.
Weis S, Hausmann M, Stoffers B, Vohn R, Kellermann T, Sturm W. Estradiol modulates functional brain organization during the menstrual cycle: An analysis of interhemispheric inhibition. J Neurosci. 2008;28(50):13401-13410.
Henry R, Deckert M, Velmathi G, Schmidt B. Review of neuromodulation techniques and technological limitations. IETE Tech Rev (Institution Electron Telecommun Eng India). 2016;33(4): 368-377.
Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208-214.
D’Andola M, Giulioni M, Dante V, Del Giudice P, Sanchez-vives MV. Control of cortical oscillatory frequency by a closed-loop system. J Neuroeng Rehabil. 2019;16(1):7.
Thibaut A, Bruno M-A, Ledoux D, Demertzi A, Laureys S. TDCS in patients with disorders of consciousness: Sham-controlled randomized double-blind study. Neurology. 2014;82(13):1112-1118.
Wu M, Yu Y, Luo L, et al. Efficiency of repetitive transcranial direct current stimulation of the dorsolateral prefrontal cortex in disorders of consciousness: A randomized sham-controlled study. Neural Plast. 2019;2019:7089543.
Huang W, Wannez S, Fregni F, et al. Repeated stimulation of the posterior parietal cortex in patients in minimally conscious state: A sham-controlled randomized clinical trial. Brain Stimul. 2017; 10(3):718-720.
Angelakis E, Liouta E, Andreadis N, et al. Transcranial direct current stimulation effects in disorders of consciousness. Arch Phys Med Rehabil. 2014;95(2):283-289.
Martens G, Fregni F, Carrière M, Barra A, Laureys S, Thibaut A. Single tDCS session of motor cortex in patients with disorders of consciousness: A pilot study. Brain Inj. 2019;33(13–14): 1679-1683.
Vanhaudenhuyse A, Demertzi A, Schabus M, et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci. 2011;23(3):570-578.
Thibaut A, Di Perri C, Chatelle C, et al. Clinical response to tDCS depends on residual brain metabolism and grey matter integrity in patients with minimally conscious state. Brain Stimul. 2015;8(6): 1116-1123.
Carrière M, Mortaheb S, Raimondo F, et al. Neurophysiological correlates of a single session of prefrontal tdcs in patients with prolonged disorders of consciousness: A pilot double-blind randomized controlled study. Brain Sci. 2020;10(7):469.
Hermann B, Raimondo F, Hirsch L, et al. Combined behavioral and electrophysiological evidence for a direct cortical effect of prefrontal tDCS on disorders of consciousness. Sci Rep. 2020;10(1): 4323.
Thibaut A, Fregni F, Estraneo A, et al. Sham-controlled randomized multicentre trial of transcranial direct current stimulation for prolonged disorders of consciousness. Eur J Neurol. 2023; 30:3016-3031.
Vitello MM, Briand MM, Ledoux D, et al. Transcutaneous vagal nerve stimulation to treat disorders of consciousness: Protocol for a double-blind randomized controlled trial. Int J Clin Heal Psychol. 2023;23(2):100360.
Briand MM, Gosseries O, Staumont B, Laureys S, Thibaut A. Transcutaneous auricular vagal nerve stimulation and disorders of consciousness: A hypothesis for mechanisms of action. Front Neurol. 2020;11:933.
Cain JA, Spivak NM, Coetzee JP, et al. Ultrasonic deep brain neuromodulation in acute disorders of consciousness: A proof-of-concept. Brain Sci. 2022;12(4):428.
Ilyas A, Pizarro D, Romeo AK, Riley KO, Pati S. The centromedian nucleus: Anatomy, physiology, and clinical implications. J Clin Neurosci. 2019;63:1-7.
Sadikot AF, Rymar V V. The primate centromedian-parafascicular complex: Anatomical organization with a note on neuromodulation. Brain Res Bull. 2009;78(2–3):122-130.
Clascá F. Thalamic output pathways. In: Halassa MM, ed. The Thalamus. Cambridge University Press; 2022:45-70. doi:10. 1017/9781108674287.004
Schiff ND. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci. 2008;1129:105-118.
Schiff ND, Plum F. The role of arousal and “gating” systems in the neurology of impaired consciousness. J Clin Neurophysiol. 2000; 17(5):438-452.
Zhou J, Liu X, Song W, et al. Specific and nonspecific thalamocortical functional connectivity in normal and vegetative states. Conscious Cogn. 2011;20(2):257-268.
Tasserie J, Uhrig L, Sitt JD, et al. Deep brain stimulation of the thalamus restores signatures of consciousness in a nonhuman primate model. Sci Adv. 2022;8(11):eabl5547.
Cohadon F, Richer E. Deep cerebral stimulation in patients with post-traumatic vegetative state. Neurochirurgie. 1993;39(5): 281-292.
Schiff ND, Giacino JT, Kalmar K, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448(7153):600-603.
Gummadavelli A, Motelow JE, Smith N, Zhan Q, Schiff ND, Blumenfeld H. Thalamic stimulation to improve level of consciousness after seizures: Evaluation of electrophysiology and behavior. Epilepsia. 2015;56(1):114-124.
Yamamoto T, Kobayashi K, Kasai M, Oshima H, Fukaya C, Katayama Y. DBS therapy for the vegetative state and minimally conscious state. Acta Neurochir Suppl. 2005;93: 101-104.
Minamimoto T, Kimura M. Participation of the thalamic CM-Pf complex in attentional orienting. J Neurophysiol. 2002;87(6): 3090-3101.
Morais PLAG, Rubio-Garrido P, de Lima RM, et al. The arousal-related “central thalamus” stimulation site simultaneously innervates multiple high-level frontal and parietal areas. J Neurosci. 2023;43(46):7812-7821.
Schiff ND. Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain. J Neural Transm. 2016;123(7):797-806.
Schiff ND. Central lateral thalamic nucleus stimulation awakens Cortex via modulation of cross-regional, laminar-specific activity during general anesthesia. Neuron. 2020;106(1):1-3.
Redinbaugh MJ, Afrasiabi M, Phillips JM, et al. Thalamic deep brain stimulation paradigm to reduce consciousness: Cortico-striatal dynamics implicated in mechanisms of consciousness. PLoS Comput Biol. 2022;18:e1010294.
Yamamoto T, Katayama Y, Kobayashi K, Oshima H, Fukaya C, Tsubokawa T. Deep brain stimulation for the treatment of vegetative state. Eur J Neurosci. 2010;32(7):1145-1151.
Edlow BL, Takahashi E, Wu O, et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 2012; 71(6):531-546.
Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 2011;519(5):933-956.
Muindi F, Kenny JD, Taylor NE, et al. Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia. Behav Brain Res. 2016;306:20-25.
Pillay S, Vizuete J, Liu X, Juhasz G, Hudetz AG. Brainstem stimulation augments information integration in the cerebral cortex of desflurane-anesthetized rats. Front Integr Neurosci. 2014; 8(FEB):8.
Taylor NE, Van Dort CJ, Kenny JD, et al. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A. 2016;113(45):12826-12831.
Solt K, Van Dort CJ, Chemali JJ, Taylor NE, Kenny JD, Brown EN. Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology. 2014;121(2): 311-319.
Amunts K, Rowald A, Petkoski S, et al. The coming decade of digital brain research—A vision for neuroscience at the intersection of technology and computing. 2022. doi:10.5281/zenodo. 6345820
Alnagger N, Cardone P, Martial C, Laureys S, Annen J, Gosseries O. The current and future contribution of neuroimaging to the understanding of disorders of consciousness. Press Medicale. 2023; 52(2):104163.
Kringelbach ML, Deco G. Brain states and transitions: Insights from computational neuroscience. Cell Rep. 2020;32(10):108128.
Phillips AJK, Robinson PA, Kedziora DJ, Abeysuriya RG. Mammalian sleep dynamics: How diverse features arise from a common physiological framework. PLoS Comput Biol. 2010; 6(6):e1000826.
Ponce-Alvarez A, Uhrig L, Deco N, et al. Macroscopic quantities of collective brain activity during wakefulness and anesthesia. Cereb Cortex. 2022;32(2):298-311.
Cofré R, Herzog R, Mediano PAM, et al. Whole-brain models to explore altered states of consciousness from the bottom up. Brain Sci. 2020;10(9):626.
Panda R, López-González A, Gilson M, et al. Whole-brain analyses indicate the impairment of posterior integration and thalamo-frontotemporal broadcasting in disorders of consciousness. Hum Brain Mapp. 2023;44(11):4352-4371.
Joglekar MR, Mejias JF, Yang GR, Wang XJ. Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate Cortex. Neuron. 2018;98(1):222-234.e8.
Van Vugt B, Dagnino B, Vartak D, et al. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science (1979). 2018;360(6388):537-542.
Florian B, Gosseries O, Weinhouse G, Bonhomme V. Normal sleep compared to altered consciousness during sedation. In: Weinhouse GL, Devlin JW, eds. Sleep in Critical Illness: Physiology, Assessment, and Its Importance to ICU Care. Springer; 2022:51-68. doi:10.1007/978-3-031-06447-0_4
Kaisti KK, Långsjö JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption and blood volume in humans. Anesthesiology. 2003;99(3):603-613.
Gutzen R, De Bonis G, De Luca C, et al. A modular and adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous datasets. Cell Reports Methods. 2024;4(100681):1-15. doi:10.1016/j.crmeth.2023.100681
Pinho AL, Amadon A, Ruest T, et al. Data descriptor: Individual brain charting, a high-resolution fMRI dataset for cognitive mapping. Sci Data. 2018;5:180105.
Banville H, Chehab O, Hyvärinen A, Engemann DA, Gramfort A. Uncovering the structure of clinical EEG signals with self-supervised learning. J Neural Eng. 2021;18(4):1-22.
Liston C, Chen AC, Zebley BD, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry. 2014;76(7):517-526.
Martens G, Ibáñez-Soria D, Barra A, et al. A novel closed-loop EEG-tDCS approach to promote responsiveness of patients in minimally conscious state: A study protocol. Behav Brain Res. 2021; 409:113311.
Piarulli A, Bergamasco M, Thibaut A, Cologan V, Gosseries O, Laureys S. EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness. J Neurol. 2016;263(9): 1746-1760.
Bodart O, Gosseries O, Wannez S, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage Clin. 2017;14:354-362.
Brunoni AR, Fregni F, Pagano RL. Translational research in transcranial direct current stimulation (tDCS): A systematic review of studies in animals. Rev Neurosci. 2011;22(4):471-481.
Kringelbach ML, Jenkinson N, Owen SLF, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007;8(8): 623-635.
Luppi AI, Cabral J, Cofre R, et al. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage. 2023;275: 120162.
Vyazovskiy V V, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G. Local sleep in awake rats. Nature. 2011;472(7344):443-447.
Bayne T, Seth AK, Massimini M. Are there islands of awareness? Trends Neurosci. 2020;43(1):6-16.
Hentschke H, Raz A, Krause BM, Murphy CA, Banks MI. Disruption of cortical network activity by the general anaesthetic isoflurane. Br J Anaesth. 2017;119(4):685-696.