Agriculture land conversion; CO2 emissions; Global warming; Greenhouse gases; Land cover; Land use change; Geography, Planning and Development; Economics and Econometrics; Management, Monitoring, Policy and Law
Abstract :
[en] Climate change and land use conversion are two major global environmental issues. A claim is made that climate change has brought new challenges for global land use, while land use conversion is hardly realized as a major driver for climate change. Using mapping techniques, this study aims to investigate the relationship between climate change and agricultural land conversion (ALC), by which land is converted from agricultural to other uses (e.g., urban areas, national and natural parks, roads, industrial areas, and afforestation projects). CO2 emission is considered as the main impact of climate change, and agricultural land conversion is regarded as the most important global land use. In this study, data are obtained from two databases: the World Bank and the Food and Agriculture Organization (FAO) for the period of 1962–2011. Considering the FAO (2015) classification, the countries are categorized into five different groups (high-income non-OECD, high-income OECD, upper-middle-, lower-middle-, and low-income countries). Economies were divided into several income groups according to 2014 gross national income per capita. The results show that agricultural areas in high-income countries have decreased, while in low- to middle-income countries, they have increased. The highest CO2 emissions can be observed, especially in high-income countries, whereas the lowest CO2 emissions happen in the low- and lower-middle-income countries. The results further show that there is a positive relationship between CO2 emissions and ALC across the world. It can be observed that CO2 emission is increasing where agricultural area is declining. On the contrary, CO2 emission is declining where agricultural area is increasing.
Disciplines :
Agriculture & agronomy
Author, co-author :
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement ; Department of Geography, Ghent University, Ghent, Belgium ; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Taheri, Fatemeh; Department of Agricultural Economics, Ghent University, Ghent, Belgium
Burkart, Stefan; Tropical Forages Program, International Center for Tropical Agriculture, Palmira, Colombia
Mahmoudi, Hossein; Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
De Maeyer, Philippe; Department of Geography, Ghent University, Ghent, Belgium ; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
Witlox, Frank; Department of Geography, Ghent University, Ghent, Belgium ; Department of Geography, University of Tartu, Tartu, Estonia ; College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Language :
English
Title :
Impact of agricultural land conversion on climate change
Amos, E., Akpan, U., & Ogunjobi, K. (2015). Households’ perception and livelihood vulnerability to climate change in a coastal area of Akwa Ibom State, Nigeria. Environment, Development and Sustainability, 17, 887. 10.1007/s10668-014-9580-3. DOI: 10.1007/s10668-014-9580-3
Apata, T. G., Samuel, K. D., & Adeola, A. O. (2009). Analysis of climate change perception and adaptation among arable food crop farmers in South Western Nigeria. Presentation at the International Association of Agricultural Economists’ 2009 Conference, Beijing, China, August 16–22, 2009.
Azadi, H., de Jong, S., Derudder, B., De Maeyer, P., & Witlox, F. (2012). Bitter sweet: How sustainable is bio-ethanol production in Brazil? Renewable and Sustainable Energy Reviews, 16, 3599–3603. DOI: 10.1016/j.rser.2012.03.015
Azadi, H., Ho, P., Hafni, E., Zarafshani, K., & Witlox, F. (2011a). Multi-stakeholder involvement and urban green space performance. Journal of Environmental Planning and Management, 54(6), 785–811. DOI: 10.1080/09640568.2010.530513
Azadi, H., Hoaa, P., & Hasfiati, L. (2011b). Agricultural land conversion drivers: a comparison between less developed, developing and developed countries. Land Degradation and Development, 22, 596–604. DOI: 10.1002/ldr.1037
Azadi, H., Houshyar, E., Zarafshani, K., Hosseininia, G., & Witlox, F. (2013). Agricultural outsourcing: A two-headed coin? Global and Planetary Change, 100, 20–27. DOI: 10.1016/j.gloplacha.2012.10.002
Bastakoti, R. C., Bharati, L., Bhattarai, U., & Wahid, S. M. (2016). Agriculture under changing climate conditions and adaptation options in the Koshi Basin. Climate and Development. 10.1080/17565529.2016.1223594. DOI: 10.1080/17565529.2016.1223594
Beckman, M., & Thi Nguyen, M. V. (2017). Upland development, climate-related risk and institutional conditions for adaptation in Vietnam. Climate and Development, 9(1), 413–422.
Bussi, J., Dadson, S., Prudhomme, Ch., & Whitehead, P. G. (2016). Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). Journal of Hydrology, 542, 357–372. DOI: 10.1016/j.jhydrol.2016.09.010
Chowdhury, H., Chowdhury, T., Thirugnanasambandam, M., Farhan, M., Ahamed, J. U., Saidur, R., et al. (2019a). A study on exergetic efficiency vis-à-vis sustainability of industrial sector in Bangladesh. Journal of Cleaner Production. 10.1016/j.jclepro.2019.05.174. DOI: 10.1016/j.jclepro.2019.05.174
Chowdhury, T., Thirugnanasambandam, H., Hossain, M., Barua, S., Ahamed, P., Saidur, J. U., et al. (2019b). Is the commercial sector of Bangladesh sustainable? Viewing via an exergetic approach. Journal of Cleaner Production. 10.1016/j.jclepro.2019.04.270. DOI: 10.1016/j.jclepro.2019.04.270
Dey, T., Pala, N. A., Shukla, G., Pal, P. K., Das, G., & Chakarvarty, S. (2017). Climate change perceptions and response strategies of forest fringe communities in Indian Eastern Himalaya. Environment, Development and Sustainability. 10.1007/s10668-017-9920-1. DOI: 10.1007/s10668-017-9920-1
Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land Clearing and the Biofuel Carbon Debt. Science, 319, 1235. DOI: 10.1126/science.1152747
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., et al. (2001). The importance of land-cover change in simulating future climates. Science, 310, 1674. DOI: 10.1126/science.1118160
Fisher, J. (2014). Global agriculture trends: Are we actually using less land? 13 Oct. 2015. http://blog.nature.org/science/2014/06/18/global-agriculture-land-sustainability-deforestation-foodsecurity/.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., et al. (2015). Global consequences of land use. Science, 309, 570–574. DOI: 10.1126/science.1111772
Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., et al. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America, 107, 16732–16737. 10.1073/pnas.0910275107. DOI: 10.1073/pnas.0910275107
Gongmei, Y., Zvi, S., & John, E. W. (2009). A weather-resolving index for assessing the impact of climate change on tourism related climate resources. Climatic Change, 95, 551–573. DOI: 10.1007/s10584-009-9565-7
Hendrix, C. S. (2017). The streetlight effect in climate change research on Africa. Global Environmental Change, 43, 137–147. DOI: 10.1016/j.gloenvcha.2017.01.009
Henriques, S. T., & Borowiecki, K. J. (2017). The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800. Energy Policy, 101, 537–549. DOI: 10.1016/j.enpol.2016.11.005
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., et al. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117–161. DOI: 10.1007/s10584-011-0153-2
IPCC. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.). IPCC, Geneva, Switzerland.
Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol., 5, e157. DOI: 10.1371/journal.pbio.0050157
Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528–531. DOI: 10.1038/nature01675
Kings, D., & Ilbery, B. (2011). Farmers’ attitudes towards organic and conventional agriculture: A behavioural perspective. Organic food and agriculture: New trends and developments in the social sciences (pp. 145–168). London: InTech Open Access Publishers.
Kuemmerlen, M., Schmalz, B., Cai, Q., Haase, P., Fohrer, N., & Jähnig, S. C. (2015). An attack on two fronts: Predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshwater Biol., 60(7), 1443–1458. DOI: 10.1111/fwb.12580
Kuklickea, C., & Demerittb, D. (2016). Adaptive and risk-based approaches to climate change and the management of uncertainty and institutional risk: The case of future flooding in England. Global Environmental Change, 37, 56–68. DOI: 10.1016/j.gloenvcha.2016.01.007
Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. PNAS, 108(9), 3465–3472. DOI: 10.1073/pnas.1100480108
Lepers, E., Lambin, E. F., Janetos, A. C., DeFries, R. S., Achard, F., Ramankutty, N., et al. (2005). A synthesis of information on rapid landcover change for the period 1981–2000. BioScience, 55(2), 115–124. DOI: 10.1641/0006-3568(2005)055[0115:ASOIOR]2.0.CO;2
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610. DOI: 10.1126/science.1152339
Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002. DOI: 10.1088/1748-9326/2/1/014002
Mascarenhas, J., Chowdhury, H., Thirugnanasambandam, M., Chowdhury, T., & Saidur, R. (2019). Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production. 10.1016/j.jclepro.2019.05.158. DOI: 10.1016/j.jclepro.2019.05.158
Nguyen, V., Vu, D., & Lebailly, P. (2011). Peasant response to agricultural land conversion and mechanisms of social differentiation in Hung Yen province, Northern Vietnam. Paper presented at the 7th Asia international conference, Hanoi, Vietnam. http://orbi.ulg.ac.be/handle/2268/100469, 15 Nov. 2013.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P., Kurz, W. A., et al. (2011). Large and persistent carbon sink in the world’s forests. Science, 333, 988–993. DOI: 10.1126/science.1201609
Pao, H.-T., & Tsai, C–M., (2010). CO2 Emissions, energy consumption and economic growth in BRIC countries. Energy Policy, 38(12), 7850–7860. DOI: 10.1016/j.enpol.2010.08.045
Paul, A. (2010). Dirmeyer, dev niyogi, nathalie de noblet-ducoudr e, robert e. dickinson and peter k. snyder. Editorial Impacts of land use change on climate. International Journal of Climatology, 30, 1905–1907. DOI: 10.1002/joc.2157
Popp, A., Krause, M., Dietrich, J Ph, Lotze-Campen, H., et al. (2012). Additional CO2 emissions from land use change - Forest conservation as a precondition for sustainable production of second generation bioenergy. Ecological Economics, 74, 64–70. DOI: 10.1016/j.ecolecon.2011.11.004
Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22, 1003. DOI: 10.1029/2007GB002952
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8, e66428. 10.1371/journal.pone.0066428. DOI: 10.1371/journal.pone.0066428
Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5, 014010. DOI: 10.1088/1748-9326/5/1/014010
Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598. DOI: 10.1073/pnas.0906865106
Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104, 19703–19708. DOI: 10.1073/pnas.0701976104
Simonneaux, V., Cheggour, A., Deschamps, C., Mouillot, F., Cerdan, O., & Bissonnais, Y. (2015). Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). Journal of Arid Environments, 122, 64–75. DOI: 10.1016/j.jaridenv.2015.06.002
Sklenicka, P. (2002). Temporal changes in pattern of one agricultural Bohemian landscape during the period 1938–1998. Ekologia(Bratislava)/Ecology(Bratislava), 21(2), 181–191.
STWR. (2012). Land grabbing the end of sustainable agriculture. http://www.stwr.org/food-security-agriculture/land-grabbing-the-end-of-sustainable-agriculture.html. Accessed May 2012.
Tasser, E., Leitinger, G., & Tappeiner, U. (2017). Climate change versus land-use change—What affects the mountain landscapes more? Land Use Policy, 60, 60–72. DOI: 10.1016/j.landusepol.2016.10.019
The Ministry of the Environment, Japan (MOEJ). (2016). Whole-atmospheric monthly CO2 concentration tops 400 ppm - Preliminary GOSAT monitoring results. http://www.gosat.nies.go.jp/newpdf/GOSATpressrelease_20160520_400ppm_en.pdf.
UNEP. (2014). Assessing global land use: Balancing consumption with sustainable supply. A report of the working group on land and soils of the international resource panel. In: S. Bringezu, H. Schütz, W. Pengue, M. O’Brien, F. Garcia, R. Sims, R. Howarth, L. Kauppi, M. Swilling, & J. Herrick (Eds.)
Vadrevu, K. P., Lasko, K., Giglio, L., & Justice, C. (2014). Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environmental Pollution, 195, 245–256. DOI: 10.1016/j.envpol.2014.06.017
Ward, D. S., & Mahowald, N. M. (2014). Contributions of developed and developing countries to global climate forcing and surface temperature change. Environmental Research Letters, 9(2014), 074008. DOI: 10.1088/1748-9326/9/7/074008
Wei, T., et al. (2012). Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proceedings of the National Academy of Sciences, 109, 12911–12915. DOI: 10.1073/pnas.1203282109
Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. Science, 341, 508–513. DOI: 10.1126/science.1239402
World Bank. (2012). Achieving climate resilient development progress report (English). IDA16. Washington, DC: World Bank. http://documents.worldbank.org/curated/en/437181468162269324/Achieving-climate-resilient-development-progress-report.
Zhong, T., Huang, X., Zhang, X., & Wang, K. (2011). Temporal and spatial variability of agricultural land loss in relation to Policy and accessibility in a low hilly region of Southeast China. Land Use Policy, 28, 762–769. DOI: 10.1016/j.landusepol.2011.01.004
Zhou, L., Dickinson, R. E., Tian, Y., Fang, J., et al. (2004). Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America, 101, 9540. DOI: 10.1073/pnas.0400357101