Electroencephalogram synchronization measure as a predictive biomarker of Vagus nerve stimulation response in refractory epilepsy: A retrospective study.
Biomarkers; Humans; Male; Female; Adult; Retrospective Studies; Young Adult; Sleep/physiology; Adolescent; Middle Aged; Electroencephalography Phase Synchronization; Treatment Outcome; Wakefulness/physiology; Vagus Nerve Stimulation/methods; Drug Resistant Epilepsy/therapy; Drug Resistant Epilepsy/physiopathology; Electroencephalography; Drug Resistant Epilepsy; Sleep; Vagus Nerve Stimulation; Wakefulness; Multidisciplinary
Abstract :
[en] There are currently no established biomarkers for predicting the therapeutic effectiveness of Vagus Nerve Stimulation (VNS). Given that neural desynchronization is a pivotal mechanism underlying VNS action, EEG synchronization measures could potentially serve as predictive biomarkers of VNS response. Notably, an increased brain synchronization in delta band has been observed during sleep-potentially due to an activation of thalamocortical circuitry, and interictal epileptiform discharges are more frequently observed during sleep. Therefore, investigation of EEG synchronization metrics during sleep could provide a valuable insight into the excitatory-inhibitory balance in a pro-epileptogenic state, that could be pathological in patients exhibiting a poor response to VNS. A 19-channel-standard EEG system was used to collect data from 38 individuals with Drug-Resistant Epilepsy (DRE) who were candidates for VNS implantation. An EEG synchronization metric-the Weighted Phase Lag Index (wPLI)-was extracted before VNS implantation and compared between sleep and wakefulness, and between responders (R) and non-responders (NR). In the delta band, a higher wPLI was found during wakefulness compared to sleep in NR only. However, in this band, no synchronization difference in any state was found between R and NR. During sleep and within the alpha band, a negative correlation was found between wPLI and the percentage of seizure reduction after VNS implantation. Overall, our results suggest that patients exhibiting a poor VNS efficacy may present a more pathological thalamocortical circuitry before VNS implantation. EEG synchronization measures could provide interesting insights into the prerequisites for responding to VNS, in order to avoid unnecessary implantations in patients showing a poor therapeutic efficacy.
Disciplines :
Neurology Neurosciences & behavior
Author, co-author :
Danthine, Venethia ; Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
Cottin, Lise ; Bio- Electro- And Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
Berger, Alexandre ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Sleep and chronobiology ; Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
Germany Morrison, Enrique Ignacio; Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
Liberati, Giulia ; Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium ; Institute of Psychology (IPSY), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
Ferrao Santos, Susana; Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium ; Department of Neurology, Cliniques Universitaires Saint Luc, Woluwe-Saint-Lambert, Belgium
Delbeke, Jean; Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
Nonclercq, Antoine ; Bio- Electro- And Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
El Tahry, Riëm; Institute of NeuroScience (IoNS), Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium ; Department of Neurology, Cliniques Universitaires Saint Luc, Woluwe-Saint-Lambert, Belgium ; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
Language :
English
Title :
Electroencephalogram synchronization measure as a predictive biomarker of Vagus nerve stimulation response in refractory epilepsy: A retrospective study.
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture WELBIO - Walloon Excellence in Life Sciences and Biotechnology QEMF - Queen Elisabeth Medical Foundation
Funding text :
Funding: VD is supported by a Fond de la Recherche Scientifique (F.R.S.-FNRS) with a FRIA grant. EIGM is funded by the Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department of the WEL Research Institute (X.2001.22). RET is funded by the Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department of the WEL Research Institute (X.2001.22) and the Queen Elisabeth Medical Foundation (QEMF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Kostov KH, Kostov H, Larsson PG, Henning O, Eckmann CAC, Lossius MI, et al. Norwegian population-based study of long-term effects, safety, and predictors of response of vagus nerve stimulation treatment in drug-resistant epilepsy: The NORPulse study. Epilepsia. 2022 Feb 1; 63(2):414–25. https://doi.org/10.1111/epi.17152 PMID: 34935136
Kuba R, Brázdil M, Kalina M, Procházka T, Hovorka J, Nežádal T, et al. Vagus nerve stimulation: Longitudinal follow-up of patients treated for 5 years. Seizure. 2009 May; 18(4):269–74. https://doi.org/10.1016/j.seizure.2008.10.012 PMID: 19081273
Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and Predictors of Seizure Freedom with Vagus Nerve Stimulation for Intractable Epilepsy. Neurosurgery. 2016; 79(3):345–53. https://doi.org/10.1227/NEU.0000000000001165 PMID: 26645965
Bodin C, Aubert S, Daquin G, Carron R, Scavarda D, McGonigal A, et al. Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG. Epilepsy Res. 2015 Jul 1; 113:98–103. https://doi.org/10.1016/j.eplepsyres.2015.03.018 PMID: 25986196
Sangare A, Marchi A, Pruvost E, Soufflet C, Crepon B, Ramdani C, et al. The effectiveness of VNS in drug-resistant epilepsy correlates with VNS induced EEG desynchronization. Brain Connect. 2020;1–33.
Vespa S, Heyse J, Stumpp L, Liberati G, Ferrao Santos S, Rooijakkers H, et al. Vagus Nerve Stimulation Elicits Sleep EEG Desynchronization and Network Changes in Responder Patients in Epilepsy. Neurotherapeutics. 2021 Oct 1; 18(4):2623–38. https://doi.org/10.1007/s13311-021-01124-4 PMID: 34668148
Bartolomei F, Bonini F, Vidal E, Trébuchon A, Lagarde S, Lambert I, et al. How does vagal nerve stimulation (VNS) change EEG brain functional connectivity? Epilepsy Res. 2016 Oct 1; 126:141–6. https://doi.org/10.1016/j.eplepsyres.2016.06.008 PMID: 27497814
Berger A, Vespa S, Dricot L, Dumoulin M, Iachim E, Doguet P, et al. How Is the Norepinephrine System Involved in the Antiepileptic Effects of Vagus Nerve Stimulation? Vol. 15, Frontiers in Neuroscience. Frontiers Media S.A.; 2021.
Krahl SE, Clark KB. Vagus nerve stimulation for epilepsy: A review of central mechanisms. Surg Neurol Int. 2012; 3(Suppl 4):S255–9. https://doi.org/10.4103/2152-7806.103015 PMID: 23230530
Friston KJ, Frith CD, Frackowiak RSJ. Time-Dependent Changes in Effective Connectivity Measured With PET. Vol. 1, + Human Brain Mapping. 1993.
Sun S, Chen H, Shao X, Liu L, Li X, Hu B. EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers. In: Proceedings—2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020. Institute of Electrical and Electronics Engineers Inc.; 2020. p. 2074–81.
Fingelkurts AA, Fingelkurts AA, Rytsälä H, Suominen K, Isometsä E, Kähkönen S. Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum Brain Mapp. 2007 Mar; 28(3):247–61. https://doi.org/10.1002/hbm.20275 PMID: 16779797
Briels CT, Briels CT, Schoonhoven DN, Schoonhoven DN, Stam CJ, De Waal H, et al. Reproducibility of EEG functional connectivity in Alzheimer’s disease. Alzheimers Res Ther. 2020 Jun 3; 12(1).
Fasiello E, Gorgoni M, Scarpelli S, Alfonsi V, Ferini Strambi L, De Gennaro L. Functional connectivity changes in insomnia disorder: A systematic review. Vol. 61, Sleep Medicine Reviews. W.B. Saunders Ltd; 2022.
Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Vol. 128, Brain. Oxford University Press; 2005. p. 2224–39.
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009 Mar; 10(3):186–98. https://doi.org/10.1038/nrn2575 PMID: 19190637
Japaridze N, Muthuraman M, Moeller F, Boor R, Anwar AR, Deuschl G, et al. Neuronal networks in west syndrome as revealed by source analysis and renormalized partial directed coherence. Brain Topogr. 2013 Jan; 26(1):157–70. https://doi.org/10.1007/s10548-012-0245-y PMID: 23011408
Suzuki H, Otsubo H, Yokota N, Nishijima S, Go C, Carter Snead O, et al. Epileptogenic modulation index and synchronization in hypsarrhythmia of West syndrome secondary to perinatal arterial ischemic stroke. Clinical Neurophysiology. 2021 May 1; 132(5):1185–93. https://doi.org/10.1016/j.clinph.2020.12.028 PMID: 33674213
Pavel AM, O’Toole JM, Proietti J, Livingstone V, Mitra S, Marnane WP, et al. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy. Epilepsia. 2023 Feb 1; 64(2):456–68. https://doi.org/10.1111/epi.17468 PMID: 36398397
Ricci L, Assenza G, Pulitano P, Simonelli V, Vollero L, Lanzone J, et al. Measuring the effects of first antiepileptic medication in Temporal Lobe Epilepsy: Predictive value of quantitative-EEG analysis. Clinical Neurophysiology. 2021 Jan 1; 132(1):25–35. https://doi.org/10.1016/j.clinph.2020.10.020 PMID: 33248432
Shrey DW, Kim McManus O, Rajaraman R, Ombao H, Hussain SA, Lopour BA. Strength and stability of EEG functional connectivity predict treatment response in infants with epileptic spasms. Clinical Neurophysiology. 2018 Oct 1; 129(10):2137–48. https://doi.org/10.1016/j.clinph.2018.07.017 PMID: 30114662
van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, et al. Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization. Prog Neurobiol [Internet]. 2014; 121:19–35. Available from: http://dx.doi.org/10.1016/j.pneurobio.2014.06.004 PMID: 25014528
Steriade M, Mccormick DA, Sejnowski TJ. Thalamocortical Oscillations in the Sleeping and Aroused Brain [Internet]. www.sciencemag.org
Purcell SM, Manoach DS, Demanuele C, Cade BE, Mariani S, Cox R, et al. Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource. Nat Commun. 2017 Jun 26; 8. https://doi.org/10.1038/ncomms15930 PMID: 28649997
Platt B, Riedel G. The cholinergic system, EEG and sleep. Vol. 221, Behavioural Brain Research. 2011. p. 499–504.
Sinha SR. Basic Mechanisms of Sleep and Epilepsy. Vol. 28, Journal of Clinical Neurophysiology •. 2011. https://doi.org/10.1097/WNP.0b013e3182120d41 PMID: 21399513
Bernard C, Frauscher B, Gelinas J, Timofeev I. Sleep, oscillations, and epilepsy. Epilepsia. 2023; https://doi.org/10.1111/epi.17664 PMID: 37226640
Ma J, Wang Z, Cheng T, Hu Y, Qin X, Wang W, et al. A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy. CNS Neurosci Ther [Internet]. 2022 Jul 27; Available from: https://onlinelibrary.wiley.com/doi/10.1111/cns.13923 PMID: 35894770
Fraschini M, Puligheddu M, Demuru M, Polizzi L, Maleci A, Tamburini G, et al. VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy. Neurosci Lett [Internet]. 2013; 536(1):14–8. Available from: http://dx.doi.org/10.1016/j.neulet.2012.12.044 PMID: 23333601
Brázdil M, Doležalová I, Koritáková E, Chládek J, Roman R, Pail M, et al. EEG reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics. Front Neurol. 2019; 10(MAY). https://doi.org/10.3389/fneur.2019.00392 PMID: 31118916
Martlé V, Peremans K, Raedt R, Vermeire S, Vonck K, Boon P, et al. Regional brain perfusion changes during standard and microburst vagus nerve stimulation in dogs. Epilepsy Res. 2014; 108(4):616–22. https://doi.org/10.1016/j.eplepsyres.2014.02.004 PMID: 24630046
Vonck K, De Herdt V, Bosman T, Dedeurwaerdere S, Van Laere K, Boon P. Thalamic and limbic involvement in the mechanism of action of vagus nerve stimulation, a SPECT study. Seizure. 2008 Dec; 17(8):699–706. https://doi.org/10.1016/j.seizure.2008.05.001 PMID: 18556220
Ibrahim GM, Sharma P, Hyslop A, Guillen MR, Morgan BR, Wong S, et al. Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. Neuroimage Clin [Internet]. 2017; 16(September):634–42. Available from: http://dx.doi.org/10.1016/j.nicl.2017.09.015 PMID: 28971013
Mithani K, Mikhail M, Morgan BR, Wong S, Weil AG, Deschenes S, et al. Connectomic Profiling Identifies Responders to Vagus Nerve Stimulation. Ann Neurol. 2019; 86(5):743–53. https://doi.org/10.1002/ana.25574 PMID: 31393626
Hachem LD, Wong SM, Ibrahim GM. The vagus afferent network: emerging role in translational connectomics. Neurosurg Focus. 2018 Sep; 45(3):E2. https://doi.org/10.3171/2018.6.FOCUS18216 PMID: 30173606
Proost R, Lagae L, Van Paesschen W, Jansen K. Sleep in children with refractory epilepsy and epileptic encephalopathies: A systematic review of literature. Vol. 38, European Journal of Paediatric Neurology. W.B. Saunders Ltd; 2022. p. 53–61.
Zanzmera P, Shukla G, Gupta A, Singh H, Goyal V, Srivastava A, et al. Markedly disturbed sleep in medically refractory compared to controlled epilepsy—A clinical and polysomnography study. Seizure. 2012 Sep; 21(7):487–90. https://doi.org/10.1016/j.seizure.2012.04.005 PMID: 22633696
Congedo M. Non-Parametric Synchronization Measures used in EEG and MEG Non-Parametric Synchronization Measures used in EEG and MEG ~ [Internet]. 2018. https://hal.science/hal-01868538v2
Vinck M, Oostenveld R, Van Wingerden M, Battaglia F, Pennartz CMA. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage [Internet]. 2011; 55(4):1548–65. Available from: http://dx.doi.org/10.1016/j.neuroimage.2011.01.055 PMID: 21276857
Liang Y, Chen C, Li F, Yao D, Xu P, Yu L. Altered functional connectivity after epileptic seizure revealed by scalp EEG. Neural Plast. 2020; 2020. https://doi.org/10.1155/2020/8851415 PMID: 33299398
Rijal S, Corona L, Perry MS, Tamilia E, Madsen JR, Stone SSD, et al. Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy. Sci Rep. 2023 Dec 1; 13(1). https://doi.org/10.1038/s41598-023-36551-0 PMID: 37316544
Ludwig KA, Miriani RM, Langhals NB, Joseph MD, Anderson DJ, Kipke DR. Using a common average reference to improve cortical neuron recordings from microelectrode arrays. J Neurophysiol. 2009 Mar; 101(3):1679–89. https://doi.org/10.1152/jn.90989.2008 PMID: 19109453
Hu L, Zhang Z. EEG Signal Processing and Feature Extraction.
Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007 Nov; 28 (11):1178–93. https://doi.org/10.1002/hbm.20346 PMID: 17266107
Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S, Fotopoulos S. Tracking brain dynamics via time-dependent network analysis. J Neurosci Methods. 2010 Oct 30; 193(1):145–55. https://doi.org/10.1016/j.jneumeth.2010.08.027 PMID: 20817039
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Vol. 57, Source: Journal of the Royal Statistical Society. Series B (Methodological). 1995.
Imperatori LS, Cataldi J, Betta M, Ricciardi E, Ince RAA, Siclari F, et al. Cross-participant prediction of vigilance stages through the combined use of wPLI and wSMI EEG functional connectivity metrics. Sleep. 2021 May 1; 44(5). https://doi.org/10.1093/sleep/zsaa247 PMID: 33220055
Imperatori LS, Betta M, Cecchetti L, Canales-Johnson A, Ricciardi E, Siclari F, et al. EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Sci Rep. 2019 Dec 1; 9(1). https://doi.org/10.1038/s41598-019-45289-7 PMID: 31222021
Liao Y, Zhou G, Liang J, Zhang X, Guo X, Luo Y. Overall Population Generalities, Sex Differences, and Individual Differences in Sleep Electroencephalography Functional Connectivity. IEEE Access. 2019; 7:160901–15.
Carboni M, De Stefano P, Vorderwülbecke BJ, Tourbier S, Mullier E, Rubega M, et al. Abnormal directed connectivity of resting state networks in focal epilepsy. Neuroimage Clin. 2020 Jan 1; 27. https://doi.org/10.1016/j.nicl.2020.102336 PMID: 32679553
Davis PE, Kapur K, Filip-Dhima R, Trowbridge SK, Little E, Wilson A, et al. Increased electroencephalography connectivity precedes epileptic spasm onset in infants with tuberous sclerosis complex. Epilepsia. 2019; 60(8):1721–32. https://doi.org/10.1111/epi.16284 PMID: 31297797
Nayak CS, Mariyappa N, Majumdar KK, Ravi GS, Prasad PD, Nagappa M, et al. NREM Sleep and Antiepileptic Medications Modulate Epileptiform Activity by Altering Cortical Synchrony. Clin EEG Neurosci. 2018 Nov 1; 49(6):417–24. https://doi.org/10.1177/1550059417747436 PMID: 29308656
Fernandez LMJ, Lüthi A. Sleep spindles: Mechanisms and functions. Physiol Rev. 2020 Apr 1; 100 (2):805–68. https://doi.org/10.1152/physrev.00042.2018 PMID: 31804897
da Silva FH Lopes, van Lierop THMT, Schrijer CF, van Leeuwen W Storm. Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalogr Clin Neurophysiol. 1973; 35 (6):627–39. https://doi.org/10.1016/0013-4694(73)90216-2 PMID: 4128158
Kim D, Kim T, Hwang Y, Lee CY, Joo EY, Seo DW, et al. Prediction of the Responsiveness to Vagus-Nerve Stimulation in Patients with Drug-Resistant Epilepsy via Directed-Transfer-Function Analysis of Their Perioperative Scalp EEGs. J Clin Med. 2022 Jul 1; 11(13). https://doi.org/10.3390/jcm11133695 PMID: 35806980
Babajani-Feremi A, Noorizadeh N, Mudigoudar B, Wheless JW. Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology. Neuroimage Clin. 2018 Jan 1; 19:990–9. https://doi.org/10.1016/j.nicl.2018.06.017 PMID: 30003036
Malow BA, Edwards; J, Marzec; M, Sagher; O, Ross; D, Fromes G. Vagus nerve stimulation reduces daytime sleepiness in epilepsy patients. 2001.
Rizzo P, Beelke M, De Carli F, Canovaro P, Nobili L, Robert A, et al. Modifications of sleep EEG induced by chronic vagus nerve stimulation in patients affected by refractory epilepsy. Clinical Neurophysiology. 2004; 115(3):658–64. https://doi.org/10.1016/j.clinph.2003.10.026 PMID: 15036062
Moore JL, Carvalho DZ, St Louis EK, Bazil C. Sleep and Epilepsy: a Focused Review of Pathophysiology, Clinical Syndromes, Co-morbidities, and Therapy. Vol. 18, Neurotherapeutics. Springer Science and Business Media Deutschland GmbH; 2021. p. 170–80.
Ikoma Y, Takahashi Y, Sasaki D, Matsui K. Properties of REM sleep alterations with epilepsy. Brain. 2023 Jun 1; 146(6):2431–42. https://doi.org/10.1093/brain/awac499 PMID: 36866512