L-band; microwave radiometry; SMAP; Soil plant atmosphere system; SPAC; transmissivity; vegetation; vegetation water potential; Forest stand; In-situ measurement; Microwave radiometry; Transmissivity; Vegetation water potential; Water potential; Computers in Earth Sciences; Atmospheric Science
Abstract :
[en] Monitoring the water status of forests is paramount for assessing vegetation health, particularly in the context of increasing duration and intensity of droughts. In this study, a methodology was developed for estimating forest water potential at the canopy scale from ground-based L-band radiometry. The study uses radiometer data from a tower-based experiment of the SMAPVEX 19-21 campaign from April to October 2019 at Harvard Forest, MA, USA. The gravimetric and the relative water content of the forest stand was retrieved from radiometer-based vegetation optical depth. A model-based methodology was adapted and assessed to transform the relative water content estimates into values of forest water potential. A comparison and validation of the retrieved forest water potential was conducted with in situ measurements of leaf and xylem water potential to understand the limitations and potentials of the proposed approach for diurnal, weekly and monthly time scales. The radiometer-based water potential estimates of the forest stand were found to be consistent in time with rPearson correlations up to 0.6 and similar in value, down to RMSE = 0.14 [MPa], compared to their in situ measurements from individual trees in the radiometer footprint, showing encouraging retrieval capabilities. However, a major challenge was the bias between the radiometer-based estimates and the in situ measurements over longer times (weeks & months). Here, an approach using either air temperature or soil moisture to update the minimum water potential of the forest stand (FWPmin) was developed to adjust the mismatch. These results showcase the potential of microwave radiometry for continuous monitoring of plant water status at different spatial and temporal scales, which has long been awaited by forest ecologists and tree physiologists.
Jagdhuber, Thomas ; Augsburg University, Institute of Geography, Augsburg, Germany ; German Aerospace Center, Microwaves and Radar Institute, Wessling, Germany
Schmidt, Anne-Sophie; German Aerospace Center, Microwaves and Radar Institute, Wessling, Germany
Fluhrer, Anke ; Augsburg University, Institute of Geography, Augsburg, Germany ; German Aerospace Center, Microwaves and Radar Institute, Wessling, Germany
Chaparro, David ; Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Spain ; German Aerospace Center, Microwaves and Radar Institute, Wessling, Germany
Jonard, François ; Université de Liège - ULiège > Département de géographie ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département de géographie > Earth Observation and Ecosystem Modelling (EOSystM Lab)
Piles, Maria ; Image Processing Lab, University of Valencia, Paterna, Spain
Holtzman, Natan; Stanford University, School of Earth & Environmental Sciences, Stanford, United States
Konings, Alexandra G. ; Stanford University, School of Earth & Environmental Sciences, Stanford, United States
Feldman, Andrew F.; Biospheric Sciences Laboratory, NASA Goddard Spaceflight Center, Greenbelt, United States ; University of Maryland, Earth System Science Interdisciplinary Center, College Park, United States
Baur, Martin J.; University of Cambridge, Department of Geography, Cambridge, United Kingdom
Steele-Dunne, Susan ; Delft University of Technology, Department of Geoscience and Remote Sensing, Delft, Netherlands
Schellenberg, Konstantin ; German Aerospace Center, Microwaves and Radar Institute, Wessling, Germany ; Friedrich Schiller University Jena, Department for Earth Observation, Jena, Germany ; Max Planck Institute for Biogeochemistry, Department Biogeochemical Processes, Jena, Germany
Kunstmann, Harald ; Augsburg University, Institute of Geography, Augsburg, Germany
Ramon Areces Foundation NASA - National Aeronautics and Space Administration
Funding text :
Thisworkwas supported in part by the MIT-Germany Seed Fund “GlobalWater Cycle andEnvironmental Monitoring usingActive and
Passive Satellite-basedMicrowave Instruments,” and in part by theMIT-Belgium Seed Fund “Early Detection of PlantWater Stress Using Remote Sensing.” The work of David Chaparro was supported in part by the Ramón Areces Foundation postdoctoral grant, in part by the projects “la Caixa” Junior Leader Fellowship under Grant LCF/BQ/PI23/11970013 (lead: O. Binks) and Grant H2020 FORGENIUS (Improving access to FORest GENetic resources Information and services for end-USers) #862221, and in part by the Ramón Areces Postdoctoral Fellowship. Thework ofAndrewF. Feldmanwas supported in part by the NASA ECOSTRESS science team and in part by theNASATerrestrial Ecology scoping
study for a dryland field campaign (ARID).
Abrams, M. D., Adaptations and responses to drought in Quercus species of North America. Tree Physiology, 7, 227-238, 1990
Anderegg, W. R. L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D. J., Jansen, S., Kolb, T., Li, S., Meinzer, F., Pita, P., Resco de Dios, V., Sperry, J. S., Wolfe, B. T., & Pacala, S. Plant water potential improves prediction of empirical stomatal models, PLOS ONE, 12, e0185481, 2017. https://doi.org/10.1371/journal.pone.0185481.
Balling, A. & Zimmermann, U. Comparative measurements of the xylem pressure ofNicotiana plants by means of the pressure bomb and pressure probe. Planta, 182, 325-338, 1990.
Baur, M. J., Jagdhuber, T., Feldman, A. F., Akbar, R., & Entekhabi, D. Estimation of relative canopy absorption and scattering at L-, C-and X-bands. Remote Sensing of Environment, 233, 111384, 2019.
Bonan, G. B., Williams, M., Fisher, R. A., & Oleson, K. W. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum. Geoscientific Model Development, 7(5), 2193-2222, 2014.
Chaparro, D., Jagdhuber, T., Piles, M., Entekhabi, D., Jonard, F., Fluhrer, A., ... & Camps, A. Global L-Band Vegetation Volume Fraction Estimates for Modeling Vegetation Optical Depth. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 6399-6402). IEEE, 2021.
Chaparro, D., Jagdhuber, T., Piles, M., Jonard, F., Fluhrer, A., Vall-llossera, M., ... & Entekhabi, D. Vegetation moisture estimation in the Western United States using radiometer-radar-lidar synergy. Remote Sensing of Environment, 303, 113993, 2024.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., ... & Zanne, A. E. Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752-755, 2012.
Choat, B., Brodribb, T.J., Brodersen, C.R. et al. Triggers of tree mortality under drought. Nature 558, 531-539, 2018. https://doi.org/10.1038/s41586-018-0240-x.
Choudhury, B.J. & Pampaloni, P. eds., Passive Microwave Remote Sensing of Land-Atmosphere Interactions. CRC Press, VSP BV, The Netherlands, 1995.
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R.A., Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., & Meir, P.: Linking hydraulic traits to tropical forest function in a size-structured and traitdriven model (TFS v.1-Hydro), Geosci. Model Dev., 9, 4227-4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016.
Clark, M. A., Choi, J., & Douglas, M. Biology 2e. Rice University, 2018.
Colliander, A., et al., SMAP Detects Soil Moisture Under Temperate Forest Canopies, Geophysical Research Letters, 47(19), e2020GL089697, 2020.
Cowan I. Transport of water in the soil-plant-atmosphere system. Journal of Applied Ecology, 2: 221-239, 1965.
Chaparro, D., Jagdhuber, T., Piles, M., Jonard, F., Vall-llossera, M., Camps, A., López-Marínez, C., Fluhrer, A., Fernández-Morán, R., Baur, M., Feldman, A. F., Entekhabi, D. Estimation of gravimetric vegetation moisture in the western United States using a multi-sensor approach. In: 2023 International Geoscience and Remote Sensing Symposium. IEEE, 2023.
Dixon, M.A., & Tyree, M.T. A new stem hygrometer, corrected for temperature gradients and calibrated against the pressure bomb. Plant, Cell & Environment, 7, 693-697, 1984.
Donlon, C. J. The Copernicus Imaging Microwave Radiometer (CIMR) Mission Requirements Document v5. 0. Paris, France: ESA. https://cimr.eu/mrd-v5, 2023.
Edwards, D. R., & Dixon, M. A. Mechanisms of drought response in Thuja occidentalis LI Water stress conditioning and osmotic adjustment. Tree Physiology, 15(2), 121-127, 1995.
El Hajj, M., Baghdadi, N., Wigneron, J. P., Zribi, M., Albergel, C., Calvet, J. C., & Fayad, I. First vegetation optical depth mapping from Sentinel-1 C-band SAR data over crop fields. Remote Sensing, 11(23), 2769, 2019.
Eller, C. B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A., Medlyn, B. E., Wagner, Y., Klein, T., Teodoro, G. S., Oliveira, R. S., Matos, I. S., Rosado, B. H. P., Fuchs, K., Wohlfahrt, G., Montagnani, L., Meir, P., Sitch, S., & Cox, P. M.: Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate, New Phytol., 226, 1622-1637, 2020. https://doi.org/10.1111/nph.16419.
Entekhabi, D., et al., The soil moisture active passive (SMAP) mission, Proceedings of the IEEE, 98(5), pp.704-716, 2010.
Entekhabi, D., et al., SMAP handbook-soil moisture active passive: Mapping soil moisture and freeze/thaw from space, 2014.
Feldman, A. F., Short Gianotti, D. J., Konings, A. G., Gentine, P., & Entekhabi, D. Patterns of plant rehydration and growth following pulses of soil moisture availability. Biogeosciences, 18, 831-847, 2021.
Forkel, M., Schmidt, L., Zotta, R. M., Dorigo, W., & Yebra, M. Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth. Hydrology and Earth System Sciences Discussions, 1-43, 2022.
Gardner, W. R. Dynamic aspects of water availability to plants, Soil Sci., 89, 63-73, 1960.
Gardner, W. R. Dynamic aspects of soil-water availability to plants, Ann. Rev. Plant Physiol., 16, 323-342, 1965.
Helman, D., Bahat, I., Netzer, Y., Ben-Gal, A., Alchanatis, V., Peeters, A., & Cohen, Y. Using time series of high-resolution planet satellite images to monitor grapevine stem water potential in commercial vineyards. Remote Sensing, 10(10), 1615, 2018.
Holtzman, N., Konings, A.G., Roy, A., & Colliander, A., "SMAPVEX19-21 Massachusetts Vegetation Optical Depth, Version 1, " [All]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/2PZJDURUJLWF. [12.12.2020].
Holtzman, N. M., Anderegg, L. D., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., ... & Konings, A. G. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences, 18(2), 739-753, 2021.
Humphrey, V., and Frankenberg, C. Continuous ground monitoring of vegetation optical depth and water content with GPS signals. Biogeosciences, 20, 1789-1811, 2023.
Hwang, T., Gholizadeh, H., Sims, D. A., Novick, K. A., Brzostek, E. R., Phillips, R. P., ... & Rahman, A. F. Capturing species-level drought responses in a temperate deciduous forest using ratios of photochemical reflectance indices between sunlit and shaded canopies. Remote Sensing of Environment, 199, 350-359, 2017.
Jackson, T. J., & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sensing of Environment, 36(3), 203-212, 1991.
Jagdhuber, T., Jonard, F., Fluhrer, A., Chaparro, D., Baur, M. J., Meyer, T., & Piles, M. Toward estimation of seasonal water dynamics of winter wheat from ground-based L-band radiometry: a concept study. Biogeosciences, 19(8), 2273-2294, 2022.
Jonard F., André F., Ponette Q., Vincke C., & Jonard M. Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003. Journal of Hydrology, 409, pp. 371-381, 2011. http://dx.doi.org/10.1016/j.jhydrol.2011.08.032.
Junttila, S., Hölttä, T., Puttonen, E., Katoh, M., Vastaranta, M., Kaartinen, H., ... & Hyyppä, H. Terrestrial laser scanning intensity captures diurnal variation in leaf water potential. Remote Sensing of Environment, 255, 112274, 2021.
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., & Gentine, P. Implementing Plant Hydraulics in the Community Land Model, Version 5, J. Adv. Model. Earth Sy., 11, 485-513, 2019. https://doi.org/10.1029/2018MS001500.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J. A. M. J., Font, J., & Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE transactions on Geoscience and remote sensing, 39(8), 1729-1735, 2001.
Konings, A. G., & Gentine, P. Global variations in ecosystem-scale isohydricity. Global Change Biology, 23(2), 891-905, 2017.
Konings, A. G., Rao, K., & Steele-Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytologist, 223(3), 1166-1172, 2019.
Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W. R., ... & Zuidema, P. A. Detecting forest response to droughts with global observations of vegetation water content. Global change biology, 27(23), 6005-6024, 2021.
Lambers, H., Stuart Chapin III, F., and Pons T. L.: Plant physiological ecology, Springer Science and Business Media, ISBN 9783030296391, 2008.
Li, X., Wigneron, J. P., Frappart, F., Fan, L., Ciais, P., Fensholt, R., ... & Moisy, C. Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products. Remote Sensing of Environment, 253, 112208, 2021.
Lin, Y., Zhu, Z., Guo, W., Sun, Y., Yang, X., & Kovalskyy, V. Continuous monitoring of cotton stem water potential using sentinel-2 imagery. Remote Sensing, 12(7), 1176, 2020.
Liu, Y., Kumar, M., Katul, G. G., Feng, X., and Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration, Nat. Clim. Change, 10, 691-695, 2020. https://doi.org/10.1038/s41558-020-0781-5.
Maherali H, Moura C.F., Caldeira M.C., Willson C.J., Jackson R.B. Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell and Environment, 29: 571-583, 2006.
Martínez-Vilalta, J. and Garcia-Forner, N.: Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept, Plant Cell Environ., 40, 962-976, 2017.
Martínez-Vilalta, J., Anderegg, W. R., Sapes, G., & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants, New Phytol., 223, 22-32, 2019.
Matheny, A. M., Mirfenderesgi, G., & Bohrer, G. Trait-based representation of hydrological functional properties of plants in weather and ecosystem models. Plant Div., 39, 1-12, 2017.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., ... & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New phytologist, 178(4), 719-739.
Melcher, P.J., Meinzer, F.C., Yount, D.E., Goldstein, G. & Zimmermann, U. Comparative measurements of xylem pressure in transpiring and non-transpiring leaves by means of the pressure chamber and the xylem pressure probe. Journal of Experimental Botany, 49, 1757-1760, 1998.
Meyer T., Weihermüller L., Vereecken H., and Jonard F. Vegetation optical depth and soil moisture retrieved from L-band radiometry over the growth cycle of a winter wheat t. Remote Sensing, 10(10): 1637, 2018. http://dx.doi.org/10.3390/rs10101637.
Meyer, T., Jagdhuber T., Piles, M., Fink, A., Grant, J., Vereecken, H., & Jonard, F. Estimating gravimetric water content of a winter wheat field from L-band vegetation optical depth. Remote Sensing, 11(20), 2353, 2019. https://doi.org/10.3390/rs11202353.
Mirfenderesgi, G., et al., Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy, Journal of Geophysical Research: Biogeosciences, 121(7), 1792-1813, 2016.
Mo, T., Choudhury, B. J., Schmugge, T. J., Wang, J. R., & Jackson, T. J. A model for microwave emission from vegetation-covered fields. Journal of Geophysical Research: Oceans, 87, 11229-11237, 1982.
Nolan, R. H., Blackman, C. J., de Dios, V. R., Choat, B., Medlyn, B. E., Li, X., Bradstock, R. A., & Boer, M. M.: Linking Forest Flammability and Plant Vulnerability to Drought, Forests, 11, 779, 2020. https://doi.org/10.3390/f11070779.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., and Phillips, R. P.: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes, Nat. Clim. Change, 6, 1023-1027, 2016. https://doi.org/10.1038/nclimate3114
Novick, K. A., Konings, A. G., & Gentine, P. Beyond soil water potential: An expanded view on isohydricity including land-atmosphere interactions and phenology. Plant, cell & environment, 42(6), 1802-1815, 2019.
Novick, K. A., Ficklin, D. L., Baldocchi, D., Davis, K. J., Ghezzehei, T. A., Konings, A. G., ... & Wood, J. D. Confronting the water potential information gap. Nature Geoscience, 15(3), 158-164, 2022.
Palmer AR, Fuentes S, Taylor D, Macinnis-Ng C, Zeppel M, Yunusa I, February E, Eamus D. Using pre-dawn leaf water potential and MODIS LAI to explore seasonal trends in the phenology of Australian and southern African woodlands and savannas. Australian Journal of Botany, 56: 557-563, 2008.
Palmer, A. R., Fuentes, S., Taylor, D., Macinnis-Ng, C., Zeppel, M., Yunusa, I., & Eamus, D. Towards a spatial understanding of water use of several land-cover classes: an examination of relationships amongst pre-dawn leaf water potential, vegetation water use, aridity and MODIS LAI. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 3(1), 1-10, 2010.
Rao, K., Anderegg, W. R., Sala, A., Martínez-Vilalta, J., & Konings, A. G. Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality. Remote Sensing of Environment, 227, 125-136, 2019.
Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Ramos-Perez, I., Valencia, E., Park, H., & Vall-Llossera, M. Vegetation water content estimation using GNSS measurements. IEEE Geoscience and Remote Sensing Letters, 9, 282-286, 2011.
Rodriguez-Dominguez, C. M., Forner, A., Martorell, S., Choat, B., Lopez, R., Peters, J. M., ... & Sack, L. Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant, Cell & Environment, 2022.
Rowlandson, T.L., et al., Capturing agricultural soil freeze/thaw state through remote sensing and ground observations: A soil freeze/thaw validation campaign, Remote Sensing of Environment, 211, 59-70, 2018.
Roy, A., et al., L-Band response to freeze/thaw in a boreal forest stand from ground-and tower-based radiometer observations, Remote Sensing of Environment, 237, 111542, 2020.
Schellenberg, K., Jagdhuber, T., Chaparro, D., Binks, O., Hellwig, F., Dubois, C., Kurum, M., Camps, A., Hartmann, H., & Schmullius, C. Estimating Canopy Interception Water Storage with GNSS-Transmissometry. In IEEE International Geoscience and Remote Sensing Symposium, 4507-4510, 2024.
Schmidt, L., Forkel, M., Zotta, R. M., Scherrer, S., Dorigo, W. A., Kuhn-Régnier, A., ... & Yebra, M. Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties. Biogeosciences, 20(5), 1027-1046, 2023.
Schmugge, T. J., & Jackson, T. J. A dielectric model of the vegetation effects on the microwave emission from soils. IEEE Transactions on Geoscience and Remote Sensing, 30(4), 757-760, 1992.
Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., & Hammel, H. T. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339-346, 1965. https://doi.org/10.1126/scien ce.148.3668.339
Slatyer, R. O. & Taylor, S. A.: Terminology in plant-and soil-water relations, Nature, 187, 922-924, 1960.
Smart, R.E., & Bingham, G.E., Rapid estimates of relative water content, Plant physiology, 53(2), 258-260, 1974.
Sullivan, F.B., et al., Comparison of lidar-and allometry-derived canopy height models in an eastern deciduous forest, Forest Ecology and Management, 406, 83-94, 2017.
Ulaby F.T., Razani M., & Dobson M.C. Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Transactions on Geoscience and Remote Sensing, GE-21(1), 51-61, 1983.
Ulaby, F. T., & El-Rayes, M. A. Microwave dielectric spectrum of vegetation-Part II: Dual-dispersion model. IEEE Transactions on Geoscience and Remote Sensing, (5), 550-557, 1987.
Ulaby, F. & Long, D. Microwave radar and radiometric remote sensing, The University of Michigan Press, Michigan, USA, 2014.
Van den Honert, T.H. "Water transport in plants as a catenary process, ". Discussions of the Faraday Society, 3, 146-153, 1948.
Venturas, M. D., Sperry, J. S., & Hacke, U. G. Plant xylem hydraulics: What we understand, current research, and future challenges: Plant xylem hydraulics, J. Integr. Plant Biol., 59, 356-389, 2017. https://doi.org/10.1111/jipb.12534.
Wigneron J.P., Kerr Y., Chanzy A., Jin Y.Q. Inversion of surface parameters from passive microwave measurements over a soybean field. Remote Sensing of Environment, 46(1), 61-72, 1993.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., and McDowell, N. G. Temperature as a potent driver of regional forest drought stress and tree mortality, Nat. Clim. Change, 3, 292-297, 2013. https://doi.org/10.1038/nclimate1693.
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests, New Phytol., 212, 80-95, https://doi.org/10.1111/nph.14009, 2016.
Yebra, M., Scortechini, G., Badi, A., Beget, M. E., Boer, M. M., Bradstock, R., ... & Ustin, S. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Scientific data, 6(1), 155, 2019.
Yvon Duché, Y., Remi Savazzi, R., Toutchkov, M. and Cabanne, E. Multisite and multispecies live fuel moisture content (LFMC) series in the French Mediterranean since 1996 [Data set]. Zenodo, 2017. https://doi.org/10.5281/zenodo.162978
Zarco-Tejada P.J., Rueda, C.A., and Ustin, SL. 2003. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85, 109-124, 2003.
Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.J.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sensing of Environment, 138, 38-50, 2013.
Zhang, Y., Bu, J., Zuo, X., Yu, K., Wang, Q., & Huang, W. Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods. Remote Sensing, 16, 2793, 2024.
Zhang, Y. J., Rockwell, F. E., Graham, A. C., Alexander, T., & Holbrook, N. M. Reversible leaf xylem collapse: a potential "circuit breaker" against cavitation. Plant Physiology, 172(4), 2261-2274, 2016.
Zhang, Y., Zhou, S., Gentine, P., & Xiao, X. Can vegetation optical depth reflect changes in leaf water potential during soil moisture dry-down events? Remote Sensing of Environment, 234, 111451, 2019.
Zhao, M., Humphrey, V., Feldman, A. F., & Konings, A. G. Temperature is likely an important omission in interpreting vegetation optical depth. Geophysical Research Letters, e2024GL110094, 51, 1-11, 2024.
Zhou, Z.; Fan, L.; De Lannoy, G.; Liu, X.; Peng, J.; Bai, X.; Frappart, F.; Baghdadi, N.; Xing, Z.; Li, X.; et al. Retrieval of High-Resolution Vegetation Optical Depth from Sentinel-1 Data over a Grassland Region in the Heihe River Basin. Remote Sensing, 2022, 14, 5468. https://doi.org/10.3390/rsl4215468
Zweifel, R., Item, H., & Häsler, R. Link between diurnal stem radius changes and tree water relations, Tree physiology, 21(12-13), 869-877, 2001.