[en] [en] BACKGROUND: Since the beginning of May 2022, cases of mpox have been reported in several European and American countries where the disease is nonendemic. We performed a retrospective genomic characterisation of the 2022 mpox outbreak in Belgium, and assessed the in vitro sensitivity of three antiviral compounds to a monkeypox virus (MPXV) strain from the 2022 outbreak.
METHODS: We sequenced the complete genomes of MPXV isolated from skin-, throat-, anorectal- and genital swab samples using the Oxford Nanopore Technologies (ONT) GridION. We subsequently analysed high-quality complete MPXV genomes and conducted a genomic analysis of MPXV complete genomes from this study with all other complete MPXV genomes available on GISAID up to October 28th, 2022. The in vitro activity of tecovirimat, brincidofovir, and cidofovir was also tested in human and monkey cell lines.
FINDINGS: We produced 248 complete MPXV genomes. Phylogenetic analysis of the complete MPXV genomes revealed that they all belong to MPXV Clade IIb B.1. Surprisingly, through phylogeographic analysis we identified a minimum number of 79 introduction events into Belgium, along with sustained local transmission. We also demonstrated the superior in vitro efficacy and selectivity of tecovirimat to the 2022 MPXV clinical strain.
INTERPRETATION: The number of sequences provides sufficient information about the MPXV lineages that were circulating in Belgium. The 2022 mpox outbreak, in Belgium, was mainly characterised by many introduction events that were promptly contained and resulted in limited human-to-human transmission of MPXV. The in vitro efficacy of antivirals against a 2022 MPXV Belgian strain highlights the potent activity and specificity of tecovirimat and its ability to prevent the formation of the extracellular enveloped viruses.
FUNDING: None.
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
Wawina-Bokalanga, Tony; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Clinical and Epidemiological Virology, 3000, Leuven, Belgium, Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo, Département de Biologie Médicale, Service de Microbiologie, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo. Electronic address: tony.wawina@kuleuven.be
Vanmechelen, Bert; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Clinical and Epidemiological Virology, 3000, Leuven, Belgium
Logist, Anne-Sophie; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Clinical and Epidemiological Virology, 3000, Leuven, Belgium
Bloemen, Mandy; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Clinical and Epidemiological Virology, 3000, Leuven, Belgium
Laenen, Lies ; Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium, Department of Microbiology, Immunology and Transplantation, KU Leuven, Laboratory of Clinical Microbiology, 3000, Leuven, Belgium
Bontems, Sébastien ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Hayette, Marie-Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Meex, Cécile ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Meuris, Christelle ; Université de Liège - ULiège > Département des sciences cliniques > Immunopathologie - Maladies infectieuses et médecine interne générale
Orban, Catherine ; Université de Liège - ULiège > Département des sciences cliniques > Immunopathologie - Maladies infectieuses et médecine interne générale
André, Emmanuel; Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium, Department of Microbiology, Immunology and Transplantation, KU Leuven, Laboratory of Clinical Microbiology, 3000, Leuven, Belgium
Snoeck, Robert; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium
Baele, Guy; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Clinical and Epidemiological Virology, 3000, Leuven, Belgium
Hong, Samuel L ; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Clinical and Epidemiological Virology, 3000, Leuven, Belgium
Andrei, Graciela ; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium
Maes, Piet; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory of Clinical and Epidemiological Virology, 3000, Leuven, Belgium. Electronic address: piet.maes@kuleuven.be
We thank all participants. The authors are grateful to Mr. Brecht Dirix for excellent technical assistance in performing the antiviral susceptibility tests. We also thank Rapha\u00EBl Boreux for regularly sending us the positive MPXV samples. SLH acknowledges support from the Research Foundation\u2013Flanders (\u201CFonds voor Wetenschappelijk Onderzoek\u2013Vlaanderen,\u201D G0E1420N). GB acknowledges support from the Internal Funds KU Leuven (Grant No. C14/18/094), from the Research Foundation\u2013Flanders (\u201CFonds voor Wetenschappelijk Onderzoek\u2013Vlaanderen,\u201D G0E1420N, G098321N), and from the DURABLE EU4Health project 02/2023-01/2027, which is co-funded by the European Union (call EU4H-2021-PJ4) under Grant Agreement No. 101102733.We thank all participants. The authors are grateful to Mr. Brecht Dirix for excellent technical assistance in performing the antiviral susceptibility tests. We also thank Rapha\u00EBl Boreux for regularly sending us the positive MPXV samples. SLH acknowledges support from the Research Foundation - Flanders (\"Fonds voor Wetenschappelijk Onderzoek - Vlaanderen,\" G0E1420N). GB acknowledges support from the Internal Funds KU Leuven (Grant No. C14/18/094), from the Research Foundation - Flanders (\"Fonds voor Wetenschappelijk Onderzoek - Vlaanderen,\u201D G0E1420N, G098321N), and from the DURABLE EU4Health project 02/2023-01/2027, which is co-funded by the European Union (call EU4H-2021-PJ4) under Grant Agreement No. 101102733.
McInnes, C.J., Damon, I.K., Smith, G.L., et al. ICTV virus taxonomy profile: Poxviridae 2023. J Gen Virol, 104(5), 2023.
Shchelkunov, S.N., Totmenin, A.V., Safronov, P.F., et al. Analysis of the monkeypox virus genome. Virology 297:2 (2002), 172–194.
European Centre for Disease Prevention and Control. Risk assessment: monkeypox multi-country outbreak. https://www.ecdc.europa.eu/en/publications-data/risk-assessment-monkeypox-multi-country-outbreak, 2022. (Accessed 2 August 2022)
Centers for Disease Control and Prevention. What clinicians need to know about monkeypox in the United States and other countries. https://emergency.cdc.gov/coca/calls/2022/callinfo_052422.asp, 2022. (Accessed 4 August 2022)
Marennikova, S.S., Seluhina, E.M., Mal'ceva, N.N., Cimiskjan, K.L., Macevic, G.R., Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull World Health Organ 46:5 (1972), 599–611.
Durski, K.N., McCollum, A.M., Nakazawa, Y., et al. Emergence of monkeypox - West and central Africa, 1970-2017. MMWR Morb Mortal Wkly Rep 67:10 (2018), 306–310.
Reed, K.D., Melski, J.W., Graham, M.B., et al. The detection of monkeypox in humans in the western hemisphere. N Engl J Med 350:4 (2004), 342–350.
Erez, N., Achdout, H., Milrot, E., et al. Diagnosis of imported monkeypox, Israel, 2018. Emerg Infect Dis 25:5 (2019), 980–983.
Vaughan, A., Aarons, E., Astbury, J., et al. Two cases of monkeypox imported to the United Kingdom, September 2018. Euro Surveill, 23(38), 2018.
Centers for Disease Control and Prevention. Monkeypox in the United States. https://www.cdc.gov/poxvirus/monkeypox/outbreak/us-outbreaks.html, 2022. (Accessed 3 June 2022)
World Health Organization. Multi-country monkeypox outbreak in non-endemic countries. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385, 2022. (Accessed 24 May 2022)
Alakunle, E., Moens, U., Nchinda, G., Okeke, M.I., Monkeypox virus in Nigeria: infection Biology, epidemiology, and evolution. Viruses, 12(11), 2020.
Chen, N., Li, G., Liszewski, M.K., et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340:1 (2005), 46–63.
World Health Organization. Monkeypox: experts give virus variants new names. https://www.who.int/news/item/12-08-2022-monkeypox-experts-give-virus-variants-new-names, 2022. (Accessed 13 April 2023)
Happi, C., Adetifa, I., Mbala, P., et al. Urgent need for a non-discriminatory and non-stigmatizing nomenclature for monkeypox virus. PLoS Biol, 20(8), 2022, e3001769.
Shchelkunov, S.N., Totmenin, A.V., Babkin, I.V., et al. Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett 509:1 (2001), 66–70.
Centers for Disease Control and Prevention. Interim clinical guidance for the treatment of monkeypox. https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html#anchor_1655488333148, 2022. (Accessed 7 August 2022)
Hoy, S.M., Tecovirimat: first global approval. Drugs 78:13 (2018), 1377–1382.
Chan-Tack, K., Harrington, P., Bensman, T., et al. Benefit-risk assessment for brincidofovir for the treatment of smallpox: U.S. food and drug administration's evaluation. Antivir Res, 195, 2021, 105182.
European Medicines Agency. Tecovirimat SIGA. https://www.ema.europa.eu/en/medicines/human/EPAR/tecovirimat-siga, 2022. (Accessed 23 June 2022)
De Clercq, E., Cidofovir in the treatment of poxvirus infections. Antivir Res 55:1 (2002), 1–13.
Lalezari, J.P., Drew, W.L., Glutzer, E., et al. (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine (cidofovir): results of a phase I/II study of a novel antiviral nucleotide analogue. J Infect Dis 171:4 (1995), 788–796.
Hostetler, K.Y., Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. Antivir Res 82:2 (2009), A84–A98.
Aldern, K.A., Ciesla, S.L., Winegarden, K.L., Hostetler, K.Y., Increased antiviral activity of 1-O-hexadecyloxypropyl-[2-(14)C]cidofovir in MRC-5 human lung fibroblasts is explained by unique cellular uptake and metabolism. Mol Pharmacol 63:3 (2003), 678–681.
Sklenovska, N., Bloemen, M., Vergote, V., et al. Design and validation of a laboratory-developed diagnostic assay for monkeypox virus. Virus Gene 59:6 (2023), 795–800.
Li, H., Handsaker, B., Wysoker, A., et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25:16 (2009), 2078–2079.
O'Toole, A., Neher, R.A., Ndodo, N., et al. APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science 382:6670 (2023), 595–600.
Minh, B.Q., Schmidt, H.A., Chernomor, O., et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:5 (2020), 1530–1534.
Tavaré, S., Some probabilistic and statistical problems in the analysis of DNA sequences. Miura, R.M., (eds.) Some mathematical questions in Biology: DNA sequence analysis. Providence, rhode islanda, 1986, American Mathematical Society, 124.
Yang, Z., A space-time process model for the evolution of DNA sequences. Genetics 139:2 (1995), 993–1005.
Rambaut, A., Lam, T.T., Max Carvalho, L., Pybus, O.G., Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol, 2(1), 2016, vew007.
du Plessis, L., McCrone, J.T., Zarebski, A.E., et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science 371:6530 (2021), 708–712.
McCrone, J.T., Hill, V., Bajaj, S., et al. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature 610:7930 (2022), 154–160.
Gill, M.S., Lemey, P., Faria, N.R., Rambaut, A., Shapiro, B., Suchard, M.A., Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol Biol Evol 30:3 (2013), 713–724.
Lemey, P., Rambaut, A., Drummond, A.J., Suchard, M.A., Bayesian phylogeography finds its roots. PLoS Comput Biol, 5(9), 2009, e1000520.
Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., Posterior summarization in Bayesian Phylogenetics using tracer 1.7. Syst Biol 67:5 (2018), 901–904.
Andrei, G., Gammon, D.B., Fiten, P., et al. Cidofovir resistance in vaccinia virus is linked to diminished virulence in mice. J Virol 80:19 (2006), 9391–9401.
Duraffour, S., Snoeck, R., de Vos, R., et al. Activity of the anti-orthopoxvirus compound ST-246 against vaccinia, cowpox and camelpox viruses in cell monolayers and organotypic raft cultures. Antivir Ther 12:8 (2007), 1205–1216.
Reed, L.J., Muench, H., A simple method of estimating fifty percent endpoints. Am J Hyg 27:3 (1938), 493–497.
Piorkowski, G., Ghosn, J., Coppee, R., et al. Genomic diversity of mpox virus in Paris area (France) during the 2022 outbreak. J Med Virol, 95(6), 2023, e28853.
Borges, V., Duque, M.P., Martins, J.V., et al. Viral genetic clustering and transmission dynamics of the 2022 mpox outbreak in Portugal. Nat Med 29:10 (2023), 2509–2517.
Vohringer, H.S., Sanderson, T., Sinnott, M., et al. Genomic reconstruction of the SARS-CoV-2 epidemic in England. Nature 600:7889 (2021), 506–511.
Goliaei, S., Foroughmand-Araabi, M.H., Roddy, A., et al. Importations of SARS-CoV-2 lineages decline after nonpharmaceutical interventions in phylogeographic analyses. Nat Commun, 15(1), 2024, 5267.
Tsui, J.L., McCrone, J.T., Lambert, B., et al. Genomic assessment of invasion dynamics of SARS-CoV-2 Omicron BA.1. Science 381:6655 (2023), 336–343.
Dellicour, S., Hong, S.L., Hill, V., et al. Variant-specific introduction and dispersal dynamics of SARS-CoV-2 in New York city - from alpha to omicron. PLoS Pathog, 19(4), 2023, e1011348.
Siegrist, E.A., Sassine, J., Antivirals with activity against mpox: a clinically oriented review. Clin Infect Dis 76:1 (2023), 155–164.
Frenois-Veyrat, G., Gallardo, F., Gorge, O., et al. Tecovirimat is effective against human monkeypox virus in vitro at nanomolar concentrations. Nat Microbiol 7:12 (2022), 1951–1955.
Warner, B.M., Klassen, L., Sloan, A., et al. In vitro and in vivo efficacy of tecovirimat against a recently emerged 2022 monkeypox virus isolate. Sci Transl Med, 14(673), 2022, eade7646.
Smith Scott, K., Olson Victoria, A., Karem Kevin, L., Jordan, R., Hruby Dennis, E., Damon Inger, K., In vitro efficacy of ST246 against smallpox and Monkeypox. Antimicrob Agents Ch 53:3 (2009), 1007–1012.
Shamim, M.A., Padhi, B.K., Satapathy, P., et al. The use of antivirals in the treatment of human monkeypox outbreaks: a systematic review. Int J Infect Dis 127 (2023), 150–161.
Rojek, A., Dunning, J., Haynes, R., Horby, P., Peto, L., Randomised controlled trials for mpox in endemic countries. Lancet Infect Dis, 23(3), 2023, 281.
Garrigues, J.M., Hemarajata, P., Karan, A., et al. Identification of tecovirimat resistance-associated mutations in human monkeypox virus - Los Angeles county. Antimicrob Agents Chemother, 67(7), 2023, e0056823.
Smith, T.G., Gigante, C.M., Wynn, N.T., et al. Tecovirimat resistance in mpox patients, United States, 2022-2023. Emerg Infect Dis 29:12 (2023), 2426–2432.
Alarcon, J., Kim, M., Terashita, D., et al. An mpox-related death in the United States. N Engl J Med 388:13 (2023), 1246–1247.
Wang, J., Shahed-Ai-Mahmud, M., Chen, A., Li, K., Tan, H., Joyce, R., An overview of antivirals against monkeypox virus and other orthopoxviruses. J Med Chem 66:7 (2023), 4468–4490.
Contag, C.A., Mische, L., Fong, I., et al. Treatment of mpox with suspected tecovirimat resistance in immunocompromised patient, United States, 2022. Emerg Infect Dis 29:12 (2023), 2520–2523.
Fortier, J.C., Marsalisi, C., Cordova, E., Guo, H.J., Verdecia, J., Challenges in managing treatment-resistant mpox complicated by severe superinfection. Open Forum Infect Dis, 11(4), 2024, ofae138.
Stafford, A., Rimmer, S., Gilchrist, M., et al. Use of cidofovir in a patient with severe mpox and uncontrolled HIV infection. Lancet Infect Dis 23:6 (2023), e218–e226.
Raccagni, A.R., Candela, C., Bruzzesi, E., et al. Real-life use of cidofovir for the treatment of severe monkeypox cases. J Med Virol, 95(1), 2023, e28218.
Scandale, P., Raccagni, A.R., Nozza, S., Unilateral blepharoconjunctivitis due to monkeypox virus infection. Ophthalmology, 129(11), 2022, 1274.
Adler, H., Gould, S., Hine, P., et al. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis 22:8 (2022), 1153–1162.
Strasfeld, L., Chou, S., Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am 24:3 (2010), 809–833.