Exploration du potentiel de l’imagerie hyperspectrale proche infrarouge et de la chimiométrie pour discriminer la banque de graines du sol de deux espèces de bois d’Afrique centrale : Erythrophleum suaveolens (Guill. & Perr.) Brenan et Erythrophleum ivorense A. Chev.
[en] Seeds contained in the soil bank can be too small to quantify visually. Concerned timber species are usually identified after germination trials in the nursery, which is time-consuming. This study explores a new approach based on near infrared (NIR-HSI) hyperspectral imaging coupled with chemometric tools. It focuses on the soil seed bank of the central African moist forests, which is still unknown. We used eighty-three seeds of two sister species, Erythrophleum suaveolens (Guill. & Perr.) Brenan and Erythrophleum ivorense A. Chev., collected in the forest soil (between 0 and 10 cm in depth), in Gabon, Cameroon, and Congo. Applying principal component analysis and partial least squares discriminant analysis, we studied the capacity of near-infrared hyperspectral imaging to identify the seeds of the two timber species. This method is fast, non-destructive, and offers new prospects for studies of forest soil seed banks.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Douh, Chauvelin ; Forest is life, TERRA Teaching and Research Centre Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium ; Université Marien N’gouabi École nationale supérieure d’Agronomie et de Foresterie (ENSAF), Laboratoire de Géomatique et d’Écologie tropicale appliquées, Brazzaville, Congo
Doucet, Jean-Louis ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Tosso, Dji-ndé Félicien ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières
Daïnou, Kasso ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières ; Université Nationale d’Agriculture, Kétou, Benin
Gorel, Anaïs ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières
Deryck, Antoine; Walloon Agricultural Research Centre (CRA-W), Valorization of Agricultural Products, Department, Gembloux, Belgium
Exploration du potentiel de l’imagerie hyperspectrale proche infrarouge et de la chimiométrie pour discriminer la banque de graines du sol de deux espèces de bois d’Afrique centrale : Erythrophleum suaveolens (Guill. & Perr.) Brenan et Erythrophleum ivorense A. Chev.
This study was carried out in the framework of the DynAfFor project (Dynamique des for\u00EAts d\u2019Afrique centrale) financed by the FFEM (Fonds fran\u00E7ais pour l\u2019environnement mondial) and the AFD (Agence fran\u00E7aise de d\u00E9veloppement).Agro-Bio Tech (Belgium), the PEFOGRN-BC projects (support project for the wider programme of training in natural resources management in the Congo Basin), the DynAfFor project (Dynamique des for\u00EAts d\u2019Afrique centrale) financed by the FFEM (Fonds fran\u00E7ais pour l\u2019environnement mondial) and the AFD (Agence fran\u00E7aise de d\u00E9veloppement), led by CIRAD, Gembloux Agro-Bio Tech and Nature+, as well as the logging companies Mokabi-Dzanga (Groupe Rougier) and CIB/OLAM for their financial, scientific and technical support, and for their aid with fieldwork. Finally, we would like to thank Dr. Dakis Yaoba Ouedraogo, Dr. Barbara Haurez, Dr. Jean-Fran\u00E7ois Gillet, Dr. Armel Lo\u00EFc Donkp\u00EAgan S\u00E8gb\u00E9dji, Jean-Yves De Vleeschouwer, Fabrice Rapezant, Gilbert Nsongola, \u00C9lodie Alberny, Mercier Mayinga, Lambert Imbalo, Ang\u00E9lique Ouadiabantou, Yves Cr\u00E9pin Nzihou, Isaac Dzombo, and Maturin Mazengu\u00E9 for their various contributions and their advice.
Aubréville A., 1970. Légumineuses-Césalpinioidés (LeguminosaeCaesalpinioideae). Flore du Cameroun. Volume 9. Muséum National d’histoire Naturelle, Paris, France, 339 p.
Biancarosa I., Espe M., Bruckner C. G., Heesch S., Liland N., Waagbo R., et al., 2017. Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. Journal of Applied Phycology, 29: 1001-1009. https://doi.org/10.1007/s10811-016-0984-3
Ben-Dor E., Banin A., 1995. Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59: 364-372. https://doi. org/10.2136/sssaj1995.03615995005900020014x
Caporaso N., Whitworth M. B., Fisk I. D., 2018. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Applied Spectroscopy Reviews, 1-21. https://doi.org/10.1080/05704928.2018.1425214
Cui Y., Xu L., An D., Liu Z., Gu J., Li S., et al., 2018. Identification of maize seed varieties based on near infrared reflectance spectroscopy and chemometrics. International Journal of Agricultural and Biological Engineering, 11: 177-183. https://doi. org/10.25165/j.ijabe.20181102.2815
Daïnou K., Bauduin A., Bourland N., Gillet J. F., Fétéké F., Doucet J.-L., 2011. Soil seed bank characteristics in Cameroonian rainforests and implications for post-logging forest recovery. Ecological Engineering, 37: 1499-1506. https://doi.org/10.1016/j. ecoleng.2011.05.004
Dale L. M., Thewis A., Boudry C., Rotar I., Dardenne P., Baeten V., et al., 2013. Hyperspectral imaging applications in agriculture and agrofood product quality and safety control: a review. Applied Spectroscopy Reviews, 48: 142-159. https://doi.org/10.1 080/05704928.2012.705800
Dale L. M., Thewis A., Rotar I., Fernández Piema J. A., Boudry C., Vidican R. M., et al., 2012. Chemometric tools for NIRS and NIR hyperspectral imaging. Bulletin of Usavm Cluj-Napoca Agriculture, 69: 70-76. http://hdl.handle.net/2268/132855
D’Erfurth I., Le Signor C., Aubert G., Sanchez M., Vernoud V., Darchy B., et al., 2012. A role for an endosperm-localized subtilase in the control of seed size in legumes. New Phytologist, 196: 738-751. https://doi.org/10.1111/j.1469-8137.2012.04296.x
Douh C., Daïnou K., Loumeto J. J., Moutsambote J.-M., Fayolle A., Tosso F., et al., 2018a. Soil seed bank characteristics in two central African forest types and implications for forest restoration. Forest Ecology and Management, 409: 766-776. https://doi.org/10.1016/j.foreco.2017.12.012
Douh C., Gorel A. P., Daïnou K., Fonteyn D., Bustillo E., Obsomer L., et al., 2018b. Banque de graines du sol et déterminants de la germination du tali, Erythrophleum suaveolens (Guill. & Perr.) Brenan. Bois et Forêts des Tropiques, 338: 43-55. https://doi. org/10.19182/bft2018.338.a31681
Douh C., Mabengo B. C., Nzila J. D., Malonga Mbouchi L., Nsongola G., Loumeto J. J., et al., 2023. Soil Seed Bank Characteristics in Congolese Rainforests and Implications for Post-Logging Plots Reforestation. Open Journal of Forestry, 13: 294-314. https://doi. org/10.4236/ojf.2023.133018
Dumas C., Rogowsky P., 2008. Fertilization and early seed formation. Académie des Sciences Institut de France, Comptes Rendus Biologies, 331: 715-725. https://doi.org/10.1016/j.crvi.2008.07.013
Duminil J., Daïnou K., Kombi Kaviriri D., Gillet P., Loo J., Doucet J.-L., et al., 2016. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests. Heredity (Edinb), 116: 295-303. https://doi.org/10.1038/hdy.2015.101
Duminil J., Heuertz M., Doucet J.-L., Bourland N., Cruaud C., Gavory F., et al., 2010. CpDNA-based species identification and phylogeography: application to African tropical tree species. Molecular Ecology, 19: 5469-5483. https://doi.org/10.1111/j.1365-294X.2010.04917.x
Eylenbosch D., Bodson B., Baeten V., Fernández Pierna J. A., 2017. NIR hyperspectral imaging spectroscopy and chemometrics for the discrimination of roots and crop residues extracted from soil samples. Journal of Chemometrics, 32: e2982. https://doi.org/10.1002/cem.2982
Fernández Pierna J. A., Vermeulen P., Amand O., Tossens A., Dardenne P., Baeten V., 2012. NIR Hyperspectral Imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed. Chemometrics and intelligent laboratory systems, 117: 233-239. https://doi. org/10.1016/j.chemolab.2012.02.004
Fernández Pierna J. A., Vermeulen P., Stilmant D., Dupuis B., Dardenne P., Baeten V., 2010. Characterisation of fonio millet by near infrared hyperspectral imaging, Proceedings of the 14th International Conference on Near Infrared Spectroscopy (ICNIRS): Breaking the Dawn. Bangkok, Thailand, 997-1002.
Fernández Pierna J. A., Baeten V., Dardenne P., Dubois J., Lewis E. N., Burger J., 2009. Spectroscopic Imaging. In: Comprehensive Chemometrics – 1st Edition. Brown S., Tauler R., Walczak B. (eds). Elsevier, 4: 173-196. https://doi.org/10.1016/B978-044452701-1.00004-1
Fernández Pierna J. A., Baeten V., Dardenne P., 2006. Screening of compound feeds using NIR hyperspectral data. Chemometrics and intelligent laboratory systems, 84: 114-118. https://doi.org/10.1016/j.chemolab.2006.03.012
Fernández Pierna J. A., Baeten V., Michotte Renier A., Cogdill R. P., Dardenne P., 2004. Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. Journal of Chemometrics, 18: 341-349. https://doi.org/10.1002/cem.877
Freycon V., 2014. Caractérisation des sols de Loundoungou et de Mokabi (Congo). Rapport de mission DynAfFor, 2 au 24 avril 2014. CIRAD, Montpelier. https://agritrop.cirad.fr/573670/
Gond V., Fayolle A., Pennec A., Cornu G., Mayaux P., Camberlin P., et al., 2013. Vegetation structure and greenness in Central Africa from Modis multi-temporal data. Philosophical Transactions of the Royal Society: Biological Sciences, 368: 20120309. http://dx.doi.org/10.1098/rstb.2012.0309
Gorel A. P., Fayolle A., Doucet J.-L., 2015. Écologie et gestion des espèces multi-usages du genre Erythrophleum (FabaceaeCaesapinioideae) en Afrique (synthèse bibliographique). Biotechnologie, Agronomie, Société et Environnement, 19: 415-429. https://popups.uliege.be/1780-4507/index.php?id=12455
Hacisalihoglu G., Larbi B., Settles A., 2010. Near-Infrared reflectance spectroscopy predicts protein, starch, and seed weight in intact seeds of Common Bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 58: 702-706. https://doi.org/10.1021/jf9019294
Hille Ris Lambers J., Clark J. S., Lavine M., 2005. Implications of seed banking for recruitment of southern Appalachian woody species. Ecology, 86: 85-95. https://doi.org/10.1890/03-0685
Janné K., Pettersen J., Lindberg N. O., Lundstedt T., 2001. Hierarchical principal component analysis (PCA) and projection to latent structure (PLS) technique on spectroscopic data as a data pre-treatment for calibration. Journal of Chemometrics, 15: 203-213. https://doi.org/10.1002/cem.677
Kjeldahl J., 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift fur Anal Chemie, 22: 366-382. https://doi.org/10.1007/BF01338151
Legendre P., Gallagher E. D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129: 271-280. https://doi.org/10.1007/s004420100716
Lipoma M. L., Funes G., Díaz S., 2018. Fire effects on the soil seed bank and post‐fire resilience of a semi‐arid shrubland in central Argentina. Austral Ecology, 43: 46-55. https://doi. org/10.1111/aec.12533
Martins A. M., Engel V. L., 2007. Soil seed banks in tropical forest fragments with different disturbance histories in southeastern Brazil. Ecological Engineering, 31: 165-174. https://doi. org/10.1016/j.ecoleng.2007.05.008
Massart D. L., Vandeginste B. G. M., Buydens L. M. C., De Jong S., Lewi P. J., Smeyers-Verbeke J., 1998. Handbook of chemometrics and qualimetrics, Part A. NIR Publications, West Sussex, United Kingdom, 867 p. https://www.sciencedirect.com/bookseries/data-handling-in-science-and-technology/vol/20/part/PA
McGoverin C. M., Engelbrecht P., Geladi P., Manley M., 2011. Characterisation of nonviable whole barley, wheat and sorghum grains using near-infrared hyperspectral data and chemometrics. Analytical Bioanalytical. Chemistry, 401: 2283-2289. https://doi.org/10.1007/s00216-011-5291-x
Mæhre H. K., Dalheim L., Edvinsen G. K., Elvevoll E. O., Jensen I.-J., 2018. Protein determination-method matters. Foods, 7: 5. https://doi.org/10.3390/foods7010005
Naganathan G. K., Grimes L. M., Subbiah J., Calkins C. R., Samal A., Meyer G. E., 2008. Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Computers and Electronics in Agriculture, 64: 225-233. https://doi.org/10.1016/j. compag.2008.05.020
Noguero M., Le Signor C., Verdier J., Aubert G., Udvardi M. K., Buitink J., et al., 2011. Rôle de l’albumen dans le développement de la graine chez les légumineuses. In: Graine 2011 (p. S4). Colloque national du Réseau français de Biologie des Graines, Nantes, France, 27-28 octobre 2011. https://prodinra.inra.fr/record/48575
Odum E. P., 1969. The strategy of ecosystem development. Science, 164: 262-270.
Padonou E. A., Akakpo B. A., Tchigossou B., Djossa B., 2022. Methods of soil seed bank estimation: a literature review proposing further work in Africa. iForest, 15: 121-127. https://doi.org/10.3832/ifor3850-015
Phuangsombut K., Ma T., Inagaki T., Tsuchikawa S., Terdwongworakul A., 2018. Near-infrared hyperspectral imaging for classification of mung bean seeds. International Journal of Food Properties, 21: 799-807. https://doi.org/10.1080/10942912.2018.1476378
Plaza-Bonilla D., Álvaro-Fuentes J., Hansen N. C., Lampurlanés J., Cantero-Martínez C., 2014. Winter cereal root growth and aboveground-belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions. Plant and soil, 374: 925-939. https://doi.org/10.1007/s11104-0131926-3
Plue J., Verheyen K., Calster H. V., Marage D., Thompson K., Kalamees R., et al., 2010. Seed banks of temperate deciduous forests during secondary succession. Journal of Vegetation Science, 21: 965-978. https://doi.org/10.1111/j.16541103.2010.01203.x
R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
Reeve A. S., Siegel D., Glaser P. H., 1996. Geochemical controls on peatland pore water from the Hudson Bay lowland: a multivariate statistical approach. Journal of Hydrology, 181: 285-304. https://doi.org/10.1016/0022-1694(95)02900-1
Roberts H. A., 1981. Seed banks in soils. In: Advances in Applied Biology. Coaker T. H. (ed.). Academic Press, 6: 1-55.
Roggo Y., Edmond A., Chalus P., Ulmschneider M., 2005. Infrared Hyperspectral Imaging for qualitative analysis of pharmaceutical solid forms. Analytica Chimica Acta, 535: 79-87. https://doi.org/10.1016/j.aca.2004.12.037
Sadaiah K., Veronica N., Nagendra V., Niharika G., Neeraja C. N., Surekha K., et al., 2018. Methods of Protein Estimation and the Influence of Heat Stress on Rice Grain Protein. International Journal of Pure & Applied Bioscience, 6: 159-168. http://doi. org/10.18782/2320-7051.5733
Segalen P., 1967. Les sols et la géomorphologie du Cameroun. Cahier de l’ORSTOM, Série Pédologie, 5 (2): 137-188.
Shahin M. A., Symons S. J., Hatcher D. W., 2014. Quantification of Mildew Damage in Soft Red Winter Wheat Based on Spectral Characteristics of Bulk Samples: A Comparison of Visible-Near-Infrared Imaging and Near-Infrared Spectroscopy. Food and Bioprocess Technology, 7: 224-234. https://doi.org/10.1007/s11947-012-1046-8
Shen Y. X., Liu W. L., Li Y. H., Guan H. L., 2014. Large sample area and size are needed for forest soil seed bank studies to ensure low discrepancy with standing vegetation. PLoS ONE, 9 (8): e105235. https://doi.org/10.1371/journal.pone.0105235
Silverstein R. M., Webster F. X., Kiemle D. J., 2007. Spectrometric identification of organic compounds. Seventh edition. State University of New York. College of Environmental Science & Forestry, 502 p. https://doi.org/10.1021/ed039p546
Skowronek S., Terwei A., Zerbe S., Mölder I., Annighöfer P., Kawaletz H., et al., 2014. Regeneration potential of floodplain forests under the influence of non-native tree species: soil seed bank analysis in Northern Italy. Restoration Ecology, 22: 22-30. https://doi.org/10.1111/rec.12027
Sousa T. R., Costa F. R. C., Bentos T. V., Leal Filho N., Mesquita R. C. G., Ribeiro I. O., 2017. The effect of forest fragmentation on the soil seed bank of Central Amazonia. Forest Ecology and Management, 393: 105-112. https://doi. org/10.1016/j.foreco.2017.03.020
Vermeulen P., Ebene M. B., Orlando B., Fernández Pierna J. A., Baeten V., 2017. Online detection and quantification of particles of ergot bodies in cereal flour using near infrared hyperspectral imaging. Food Additives & Contaminants: Part A, 34 (8): 1312-1319. https://doi.org/10.1080/19440049.2017.1336798
Vermeulen P., Fernández Pierna J. A., Abbas O., Dardenne P., Baeten V., 2010. Authentication and traceability of agricultural and food products using vibrational spectroscopy. In: Applications of vibrational spectroscopy in food science. Li-Chan E.C.Y., Griffiths P.R., Chalmers J. M. (Eds.). United Kingdom, John Wiley & Sons, 609-630. https://doi.org/10.1002/0470027320. s8969
Williams P., Geladi P., Fox G., Manley M., 2009. Maize kernel hardness classification by Near Infrared (NIR) Hyperspectral Imaging and multivariate data analysis. Analytica Chimica Acta, 653: 121-130. https://doi.org/10.1016/j.aca.2009.09.005
Wise B. M., Shaver J. M., Gallagher N. B., Windig W., Bro R., Koch R. S., 2006. PLSJToolbox Version 4.0 for use with Matlab™. USA, Eigenvector Research Inc., 420 p.
Yang Z., Hana L., Fernandez Pierna J. A., Dardenne P., Baeten V., 2011. The potential of near infrared microscopy to detect, identify and quantify processed animal by-products. Journal of Near Infrared Spectroscopy, 19: 211-231. https://doi.org/10.1255/jnirs.935
Zebaze D., Fayolle A., Daïnou K., Libalah M., Droissart V., Sonké B., et al., 2021. Land Use Has Little Influence on the Soil Seed Bank in a Central African Moist Forest. Biotropica, 54: 100-112. https://doi.org/10.1111/btp.13032