s Essential oils, Weed populations, Botanical herbicides, Arabidopsis thaliana, Differentially accumulated protein
Abstract :
[en] The increasing use of synthetic chemical herbicides has resulted in environmental, human and animal health issues. This has also led to the development of herbicide resistance in weed populations. The use of essential oils (EOs) can contribute to the development of effective, eco-friendly and nature-based alternatives to these chemical products due to their phytotoxicity and multisite action. Our study aimed to evaluate the proteomic response of Arabidopsis thaliana (A. thaliana) leaves to the application of a cinnamon essential oil (CEO) emulsion. The results showed that the application of CEO emulsion at a concentration of 6% severely impacted the proteomic profile of A. thaliana, especially for membrane proteins and those involved in the photosynthesis process. Interestingly, 40 proteins were identified and listed as the most differentially accumulated proteins in the leaves of A. thaliana. CEO decreased the expression of all the proteins associated with catabolism and anabolism processes while simultaneously increasing the expression levels of proteins involved in the response to oxidative stress. Overall, these findings allowed us to obtain a global view of the proteome response to CEO, opening promising perspectives for the development of natural herbicides, especially given the low probability of developing resistant weed populations.
Ben Kaab, Sofiène ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Manon Genva; Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
Hervé Degand; Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium View author publications
Foncoux, Bérénice ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Pierre Morsomme; Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
Jijakli, Haissam ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Language :
English
Title :
Label free quantitative proteomic analysis reveals the physiological and biochemical responses of Arabidopsis thaliana to cinnamon essential oil
G. Schütte et al. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants Environ. Sci. Eur. 29 5 28163993 5250645 0644.03029 10.1186/s12302-016-0100-y
Soltys, D., Krasuska, U. & Bogatek, R.Gniazdowska, a. allelochemicals as Bioherbicides - Present and perspectives. Herbic. - Curr. Res. Case Stud. Use. 517–542. https://doi.org/10.5772/56185 (2013).
I. Heap Global perspective of herbicide-resistant weeds Pest Manag Sci. 70 1306 1315 1:CAS:528:DC%2BC2cXnt1yqsQ%3D%3D 24302673 1314.11054 10.1002/ps.3696
R. Radhakrishnan A.A. Alqarawi E.F. Abd Allah Bioherbicides: Current knowledge on weed control mechanism Ecotoxicol. Environ. Saf. 158 131 138 1:CAS:528:DC%2BC1cXnvVSrt7s%3D 29677595 1452.90288 10.1016/j.ecoenv.2018.04.018
F.E. Dayan S.O. Duke Natural compounds as Next-Generation herbicides Plant. Physiol. 166 1090 1105 24784133 4226356 10.1104/pp.114.239061
E. Assadpour et al. Application of essential oils as natural biopesticides; recent advances Crit. Rev. Food Sci. Nutr. 0 1 21
R. Pavela G. Benelli Essential oils as ecofriendly biopesticides? Challenges and constraints Trends Plant. Sci. 21 1000 1007 1:CAS:528:DC%2BC28XhslehurvK 27789158 0825.94116 10.1016/j.tplants.2016.10.005
J. Li et al. Artemisia argyi essential oil exerts herbicidal activity by inhibiting photosynthesis and causing oxidative damage Ind. Crops Prod. 194 116258 1:CAS:528:DC%2BB3sXhsVansrw%3D 1529.81097 10.1016/j.indcrop.2023.116258
I. Uremis M. Arslan M.K. Sangun Herbicidal activity of essential oils on the germination of some problem weeds Asian J. Chem. 21 3199 3210 1:CAS:528:DC%2BD1MXktVamtbY%3D 1419.62505
W. Bouabidi et al. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils Nat. Prod. Res. 29 864 868 1:CAS:528:DC%2BC2MXjtVChsg%3D%3D 25553803 10.1080/14786419.2014.980246
S. Ben Kaab et al. Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent Span. J. Agric. Res. 17 e1006 10.5424/sjar/2019172-14043
Raveau, R. & Fontaine, J. & Lounès-Hadj Sahraoui, A. essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9, (2020).
A. Taban M.J. Saharkhiz G. Kavoosi Development of pre-emergence herbicide based on arabic gum-gelatin, apple pectin and savory essential oil nano-particles: A potential green alternative to metribuzin Int. J. Biol. Macromol. 167 756 765 1:CAS:528:DC%2BB3cXisF2gtr%2FP 33285197 10.1016/j.ijbiomac.2020.12.007
N. Somala C. Laosinwattana M. Teerarak Formulation process, physical stability and herbicidal activities of Cymbopogon nardus essential oil-based nanoemulsion Sci. Rep. 12 1 14 10.1038/s41598-022-14591-2
Ni, X. et al. Inhibitory activities of essential oils from Syzygium aromaticum on emergence of Echinochloa crus-galli. (2023). https://doi.org/10.1371/journal.pone.0304863
H. Bai et al. Phytochemical profiling and allelopathic effect of garlic essential oil on barnyard grass (Echinochloa crusgalli L) PLoS One 18 e0272842 1:CAS:528:DC%2BB3sXpt1Gju78%3D 37098009 10128991 10.1371/journal.pone.0272842
C. Yang D.H. Hu Y. Feng Antibacterial activity and mode of action of the Artemisia capillaris essential oil and its constituents against respiratory tract infection-causing pathogens Mol. Med. Rep. 11 2852 2860 1:CAS:528:DC%2BC2MXot12mu7c%3D 25522803 1268.92024 10.3892/mmr.2014.3103
L. Lins et al. Insights into the relationships between herbicide activities, molecular structure and membrane interaction of cinnamon and citronella essential oils Int. J. Mol. Sci. 20 1234 1429.41034 10.3390/ijms20164007
Dedieu, L. et al. Antibacterial mode of action of the Daucus carota essential oil active compounds against Campylobacter jejuni and efflux-mediated drug resistance in Gram-negative bacteria. Molecules, 25, (2020).
M. Verdeguer A.M. Sánchez-Moreiras F. Araniti Phytotoxic effects and mechanism of action of essential oils and terpenoids Plants 9 1 48 10.3390/plants9111571
Wu, S. J. & Ng, L. T. Antiproliferative activity of Cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 cells. Evidence-based Complement. Altern. Med. (2011).
C. Pannee I. Chandhanee L. Wacharee Antiinflammatory effects of essential oil from the leaves of Cinnamomum cassia and cinnamaldehyde on lipopolysaccharide-stimulated J774A.1 cells J. Adv. Pharm. Technol. Res. 5 164 170 25364694 4215479 10.4103/2231-4040.143034
J. Choi et al. Constituents of the essential oil of the Cinnamomum cassia stem bark and its biological properties Arch. Pharm. Res. 24 5 418 423 1:CAS:528:DC%2BD3MXotlCis70%3D 11693543 1172.53313 10.1007/BF02975187
E.J. Verspohl K. Bauer E. Neddermann Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro Phyther Res. 19 203 206 10.1002/ptr.1643
B.C. Liao et al. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: Effects upon IκB and Nrf2. Toxicol Appl. Pharmacol. 229 161 171 1:CAS:528:DC%2BD1cXlvF2rtrw%3D 10.1016/j.taap.2008.01.021
M.M.M. de Oliveira D.F. Brugnera J.A. do Nascimento N.N. Batista R.H. Piccoli Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces Eur. Food Res. Technol. 234 821 832 10.1007/s00217-012-1694-y
S.T. Chou et al. Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells Int. J. Mol. Sci. 14 19186 19201 1:CAS:528:DC%2BC2cXitFSjtbY%3D 24051402 3794828 10.3390/ijms140919186
J. Sharifi-Rad et al. Cinnamomum species: Bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits Front. Pharmacol. 12 1 27 1358.05222 10.3389/fphar.2021.600139
J. Feng et al. Preparation of cinnamaldehyde nanoemulsions: Formula optimization, antifungal activity, leaf adhesion, and safety assessment Ind. Crops Prod. 200 116825 1:CAS:528:DC%2BB3sXptF2qu7w%3D 10.1016/j.indcrop.2023.116825
K. Rajkovic M. Pekmezovic A. Barac J. Nikodinovic-Runic Arsić Arsenijević, V. Inhibitory effect of thyme and cinnamon essential oils on aspergillus flavus: Optimization and activity prediction model development Ind. Crops Prod. 65 7 13 1:CAS:528:DC%2BC2cXitVWhtb7I 10.1016/j.indcrop.2014.11.039
D. Kocevski et al. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against populations of aspergillus species J. Food Sci. 78 731 737 10.1111/1750-3841.12118
Y. Yang M.B. Isman J.H. Tak Insecticidal activity of 28 essential oils and a commercial product containing cinnamomum cassia bark essential oil against sitophilus zeamais Motschulsky Insects 11 1 15 1:CAS:528:DC%2BB3cXhtValu7rF 10.3390/insects11080474
E.J. Lee J.R. Kim D.R. Choi Y.J. Ahn Toxicity of cassia and cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae) J. Econ. Entomol. 101 1960 1966 1:CAS:528:DC%2BD1MXmtlOltw%3D%3D 19133480 10.1603/0022-0493-101.6.1960
L.O. Viteri Jumbo L.R.A. Faroni E.E. Oliveira M.A. Pimentel G.N. Silva Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus say, in small storage units Ind. Crops Prod. 56 27 34 1:CAS:528:DC%2BC2cXmsVChu7s%3D 10.1016/j.indcrop.2014.02.038
T. Tworkoski Herbicide effects of essential oils Weed Sci. 50 425 431 1:CAS:528:DC%2BD38XlsFCnsb4%3D 1041.45013 10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2
R Core Team. Development Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, 3 (2020). (2020).
Josse, J., Husson, F. & missMDAA package for handling missing values in multivariate data analysis. J. Stat. Softw.70, (2016).
M.E. Ritchie et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies Nucleic Acids Res. 43 e47 25605792 4402510 1453.62802 10.1093/nar/gkv007
Renoz, F. et al. The modes of action of Mentha arvensis essential oil on the granary weevil Sitophilus granarius revealed by a label-free quantitative proteomic analysis. J. Pest Sci.95, 381–395 (2022). (2004).
Ramsak, Z. et al. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. 42, 1167–1175 (2014).
Y. Wang et al. Evaluation of cinnamon essential oil microemulsion and its vapor phase for controlling postharvest gray mold of pears (Pyrus pyrifolia) J. Sci. Food Agric. 94 1000 1004 1:CAS:528:DC%2BC3sXhsV2nu7nK 24037944 1324.34200 10.1002/jsfa.6360
A. Synowiec K. Możdżeń A. Krajewska M. Landi F. Araniti Carum carvi L. essential oil: a promising candidate for botanical herbicide against Echinochloa crus-galli (L.) P. Beauv. In maize cultivation Ind. Crops Prod. 140 111652 1:CAS:528:DC%2BC1MXhs1artLzP 10.1016/j.indcrop.2019.111652
F. Araniti B. Miras-Moreno L. Lucini M. Landi M.R. Abenavoli Metabolomic, proteomic and physiological insights into the potential mode of action of thymol, a phytotoxic natural monoterpenoid phenol: the phytotoxic effect of thymol on adult plants of A. Thaliana Plant. Physiol. Biochem. 153 141 153 1:CAS:528:DC%2BB3cXhtV2kur7K 32502716 10.1016/j.plaphy.2020.05.008
F. Salvato et al. Label-free quantitative proteomics of enriched nuclei from sugarcane (Saccharum ssp) stems in response to Drought stress Proteomics 19 1 15 10.1002/pmic.201900004
S. Cordeau M. Triolet S. Wayman C. Steinberg J.P. Guillemin Bioherbicides: Dead in the water? A review of the existing products for integrated weed management Crop Prot. 87 44 49 1:CAS:528:DC%2BC28XnsVajur4%3D 10.1016/j.cropro.2016.04.016
M. Liu S. Lu Plastoquinone and Ubiquinone in plants: Biosynthesis, physiological function and metabolic Engineering Front. Plant. Sci. 7 1 18 2016P&SS.121..1L 1382.35326 10.3389/fpls.2016.01898
Ben Kaab, S. et al. Cynara cardunculus crude extract as a powerful natural herbicide and insight into the mode of action of its bioactive molecules. Biomolecules10, (2020).
P. Liu et al. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity BMC Plant. Biol. 19 1 21
S. Jarvit P.J. Gollanf E.M. Aro Understanding the roles of the thylakoid lumen in photosynthesis regulation Plant. Sci. 4 1 14 1412.91029
J. Li et al. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds Sci. Rep. 11 1 15
He, B., Hu, Y., Wang, W., Yan, W. & Ye, Y. The progress towards novel herbicide modes of action and targeted herbicide development. Agronomy12, (2022).
I. Bettaieb Rebey et al. Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages Sci. Hortic. (Amsterdam) 246 453 461 1:CAS:528:DC%2BC1cXitlGgt7nJ 10.1016/j.scienta.2018.11.016
C. Trinidad Marquez C. Millán J.M. Salmon Plasma membrane sterols are involved in yeast’s ability to adsorb polyphenolic compounds resulting from wine model solution browning J. Agric. Food Chem. 57 8026 8032 1:CAS:528:DC%2BD1MXhtVWjsLbF 10.1021/jf901629u 19691282
F.E. Dayan S.B. Watson Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action Pestic Biochem. Physiol. 101 182 190 1:CAS:528:DC%2BC3MXhsFSksLrP 62.0695.29 10.1016/j.pestbp.2011.09.004
M. Deleu J. Crowet M.N. Nasir L. Lins Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review BBA - Biomembr. 10.1016/j.bbamem.2014.08.023
A.G. Erlejman S.V. Verstraeten C.G. Fraga P.I. Oteiza The interaction of flavonoids with membranes: Potential determinant of flavonoid antioxidant effects Free Radic Res. 38 1311 1320 1:CAS:528:DC%2BD2cXhtFCqur%2FP 15763955 10.1080/10715760400016105
Movileanu, L., Neagoe, I. & Luiza, M. Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers. 205, 135–146 (2000).
F.E. Dayan D.K. Owens S.B. Watson R.N. Asolkar L.G. Boddy Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action Front. Plant. Sci. 6 222 25904929 4389368 10.3389/fpls.2015.00222
S. Lebecque L. Lins F.E. Dayan M.L. Fauconnier M. Deleu Interactions between natural herbicides and lipid bilayers mimicking the plant plasma membrane Plant. Sci. 10 1 11
Mittler, R. Oxidative stress, antioxidants and stress tolerance 7, Trends Plant Sci.7(9), 405–410 (2002).
Singh, H. P., Batish, D. R., Kaur, S., Arora, K. & Kohli, R. K. A -Pinene inhibits growth and induces oxidative stress in roots. 1261–1269 (2006). https://doi.org/10.1093/aob/mcl213
Galati, G., Sabzevari, O., Wilson, J. X. & Brien, P. J. O. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. 177, 91–104 (2002).
F. Mahdavikia M.J. Saharkhiz A. Karami Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L) Sci. Hortic. (Amsterdam) 10.1016/j.scienta.2016.11.029
R. Ksouri et al. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents Food Chem. Toxicol. 47 2083 2091 1:CAS:528:DC%2BD1MXosV2gtLo%3D 19500639 1195.91043 10.1016/j.fct.2009.05.040
Duke, S. O. et al. New approaches to Herbicide and Bioherbicide Discovery. Weed Sci. 1–21. https://doi.org/10.1017/wsc.2024.54 (2024).
S.E. Ong M. Mann Mass Spectrometry–Based Proteomics turns quantitative Nat. Chem. Biol. 1 252 262 1:CAS:528:DC%2BD2MXhtVamtrfI 16408053 10.1038/nchembio736
M. Bantscheff S. Lemeer M.M. Savitski B. Kuster Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present Anal. Bioanal Chem. 404 939 965 1:CAS:528:DC%2BC38XpvVelu7o%3D 22772140 10.1007/s00216-012-6203-4
T. Välikangas T. Suomi L. Elo L. A systematic evaluation of normalization methods in quantitative label-free proteomics Brief. Bioinform 19 1 11 27694351
Z. Li et al. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ orbitrap velos J. Proteome Res. 11 1582 1590 2012fscs.book...L 1:CAS:528:DC%2BC3MXhs1GhsLbI 22188275 1258.62104 10.1021/pr200748h