[en] In kidney transplantation, day-zero biopsies are used to assess organ quality and discriminate between donor-inherited lesions and those acquired post-transplantation. However, many centers do not perform such biopsies since they are invasive, costly and may delay the transplant procedure. We aim to generate a non-invasive virtual biopsy system using routinely collected donor parameters. Using 14,032 day-zero kidney biopsies from 17 international centers, we develop a virtual biopsy system. 11 basic donor parameters are used to predict four Banff kidney lesions: arteriosclerosis, arteriolar hyalinosis, interstitial fibrosis and tubular atrophy, and the percentage of renal sclerotic glomeruli. Six machine learning models are aggregated into an ensemble model. The virtual biopsy system shows good performance in the internal and external validation sets. We confirm the generalizability of the system in various scenarios. This system could assist physicians in assessing organ quality, optimizing allograft allocation together with discriminating between donor derived and acquired lesions post-transplantation.
Disciplines :
Urology & nephrology
Author, co-author :
Yoo, Daniel; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France
Divard, Gillian; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France ; Kidney Transplant Department, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
Raynaud, Marc; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France
Cohen, Aaron; OneLegacy, Los Angeles, CA, USA
Mone, Tom D; OneLegacy, Los Angeles, CA, USA
Rosenthal, John Thomas; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
Bentall, Andrew J ; Division of Nephrology and Hypertension, Mayo Clinic Transplant Center, Rochester, MN, USA
Stegall, Mark D; Department of Surgery, Mayo Clinic, Rochester, MN, USA
Naesens, Maarten; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
Zhang, Huanxi; Organ Transplant Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
Wang, Changxi; Organ Transplant Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
Gueguen, Juliette; Néphrologie-Immunologie Clinique, Hôpital Bretonneau, CHU Tours, Tours, France
Kamar, Nassim; Department of Nephrology and Organ Transplantation, Paul Sabatier University, INSERM, Toulouse, France
Bouquegneau, Antoine ; Université de Liège - ULiège > Département des sciences cliniques > Néphrologie
Batal, Ibrahim ; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
Coley, Shana M; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
Gill, John S; Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
Oppenheimer, Federico; Kidney Transplant Department, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
De Sousa-Amorim, Erika; Kidney Transplant Department, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
Kuypers, Dirk R J; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
Durrbach, Antoine; Department of Nephrology, AP-HP Hôpital Henri Mondor, Créteil, Île de France, France
Seron, Daniel; Nephrology Department, Hospital Vall d'Hebrón, Autonomous University of Barcelona, Barcelona, Spain
Rabant, Marion; Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
Van Huyen, Jean-Paul Duong; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France ; Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
Campbell, Patricia; Faculty of Medicine & Dentistry - Laboratory Medicine & Pathology Dept, University of Alberta, Edmonton, AB, Canada
Shojai, Soroush ; Faculty of Medicine & Dentistry - Laboratory Medicine & Pathology Dept, University of Alberta, Edmonton, AB, Canada
Mengel, Michael ; Faculty of Medicine & Dentistry - Laboratory Medicine & Pathology Dept, University of Alberta, Edmonton, AB, Canada
Bestard, Oriol; Nephrology Department, Hospital Vall d'Hebrón, Autonomous University of Barcelona, Barcelona, Spain
Basic-Jukic, Nikolina; Department of nephrology, arterial hypertension, dialysis and transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
Jurić, Ivana; Department of nephrology, arterial hypertension, dialysis and transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
Boor, Peter ; Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
Cornell, Lynn D; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
Alexander, Mariam P ; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
Toby Coates, P ; Department of Renal and Transplantation, University of Adelaide, Royal Adelaide Hospital Campus, Adelaide, SA, Australia
Legendre, Christophe; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France ; Department of Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
Reese, Peter P; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France ; Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadephia, PA, USA
Lefaucheur, Carmen; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France ; Kidney Transplant Department, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
Aubert, Olivier; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France ; Department of Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
Loupy, Alexandre; Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, F-75015, Paris, France. alexandre.loupy@inserm.fr ; Department of Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France. alexandre.loupy@inserm.fr
We thank Sophie Ferlicot, Sandra Cockfield, Sumit Mohan, Syed A. Husain, David J. Cohen, Lloyd E. Ratner, and Maisarah Jalalonmuhali for data acquisition. French government managed by the National Research Agency (ANR) with the grant agreement ANR-17-RHUS-0010 and European Union’s Horizon 2020 research and innovation program EU-TRAIN with the grant agreement no. 754995 provided financial support. The funders of this study had no role in the study design, data collection, analysis, or interpretation of the manuscript.
Mallory, T. B. Pathology. N. Engl. J. Med. 236, 438–443 (1947).
Barry, J. M. & Murray, J. E. The first human renal transplants. J. Urol. 176, 888–890 (2006).
Michon, L. et al. [An attempted kidney transplantation in man: medical and biological aspects]. Presse Med. 61, 1419–1423 (1953).
Gaber, L. W. et al. Glomerulosclerosis as a determinant of posttransplant function of older donor renal allografts. Transplantation 60, 334–339 (1995).
Naesens, M. Zero-time renal transplant biopsies: a comprehensive review. Transplantation 100, 1425–1439 (2016).
Mengel, M. et al. Protocol biopsies in renal transplantation: insights into patient management and pathogenesis. Am. J. Transpl. 7, 512–517 (2007).
Chauhan, A. et al. Using implantation biopsies as a surrogate to evaluate selection criteria for living kidney donors. Transplantation 96, 975–980 (2013).
Randhawa, P. Role of donor kidney biopsies in renal transplantation. Transplantation 71, 1361–1365 (2001).
Solez, K. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753–760 (2008).
Sung, R. S. et al. Determinants of discard of expanded criteria donor kidneys: impact of biopsy and machine perfusion. Am. J. Transpl. 8, 783–792 (2008).
Mengel, M. & Sis, B. An appeal for zero-time biopsies in renal transplantation. Am. J. Transpl. 8, 2181–2182 (2008).
Springfield, D. S. & Rosenberg, A. Biopsy: complicated and risky. J. Bone Jt. Surg. Am. 78, 639–643 (1996).
Aubert, O. et al. Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study. BMJ 351, h3557 (2015).
Matas, A. J. et al. OPTN/SRTR 2013 Annual Data Report: kidney. Am. J. Transpl. 15, 1–34 (2015).
Jadlowiec, C. C. et al. Transplant outcomes using kidneys from high KDPI acute kidney injury donors. Clin. Transpl. 35, e14279 (2021).
Mancilla, E. et al. Time-zero renal biopsy in living kidney transplantation: a valuable opportunity to correlate predonation clinical data with histological abnormalities. Transplantation 86, 1684–1688 (2008).
Bora, A. et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health 3, e10–e19 (2021).
Miles, J., Turner, J., Jacques, R., Williams, J. & Mason, S. Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review. Diagn. Progn. Res 4, 16 (2020).
Sufriyana, H. et al. Comparison of multivariable logistic regression and other machine learning algorithms for prognostic prediction studies in pregnancy care: systematic review and meta-analysis. JMIR Med. Inf. 8, e16503 (2020).
Huang, P. et al. Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. Lancet Digit Health 1, e353–e362 (2019).
Roufosse, C. et al. A 2018 reference guide to the banff classification of renal allograft pathology. Transplantation 102, 1795–1814 (2018).
Pérez-Sáez, M. J., Montero, N., Redondo-Pachón, D., Crespo, M. & Pascual, J. Strategies for an expanded use of kidneys from elderly donors. Transplantation 101, 727–745 (2017).
Azancot, M. A. et al. The reproducibility and predictive value on outcome of renal biopsies from expanded criteria donors. Kidney Int. 85, 1161–1168 (2014).
Yin, P.-N. et al. Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches. BMC Med. Inform. Decis. Mak. 20, 162 (2020).
Marsh, J. N. et al. Deep learning global glomerulosclerosis in transplant kidney frozen sections. IEEE Trans. Med. Imaging 37, 2718–2728 (2018).
Hara, S. et al. Evaluating tubulointerstitial compartments in renal biopsy specimens using a deep learning-based approach for classifying normal and abnormal tubules. PLoS One 17, e0271161 (2022).
Chapman, J. R. Chronic calcineurin inhibitor nephrotoxicity-lest we forget. Am. J. Transpl. 11, 693–697 (2011).
Loupy, A. et al. Determinants and Outcomes of accelerated arteriosclerosis: major impact of circulating antibodies. Circ. Res 117, 470–482 (2015).
Gosset, C. et al. Circulating donor-specific anti-HLA antibodies are a major factor in premature and accelerated allograft fibrosis. Kidney Int. 92, 729–742 (2017).
Loupy, A. & Lefaucheur, C. Antibody-mediated rejection of solid-organ allografts. N. Engl. J. Med 379, 1150–1160 (2018).
Debout, A. et al. Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int. 87, 343–349 (2015).
Obermeyer, Z. & Emanuel, E. J. Predicting the future - big data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219 (2016).
Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).
Haas, M. et al. Arteriosclerosis in kidneys from healthy live donors: comparison of wedge and needle core perioperative biopsies. Arch. Pathol. Lab Med. 132, 37–42 (2008).
Muruve, N. A., Steinbecker, K. M. & Luger, A. M. Are wedge biopsies of cadaveric kidneys obtained at procurement reliable? Transplantation 69, 2384–2388 (2000).
Bago-Horvath, Z. et al. The cutting (w)edge–comparative evaluation of renal baseline biopsies obtained by two different methods. Nephrol. Dial. Transpl. 27, 3241–3248 (2012).
Wainer, J. & Cawley, G. Nested cross-validation when selecting classifiers is overzealous for most practical applications. Expert. Syst. Appl. 182, 115222 (2021).
Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350, g7594 (2015).
Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw., Artic. 28, 1–26 (2008).
Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).
Ripley, B. D. Hjort, N. L. Pattern Recognition and Neural Networks. (Cambridge University Press, 1996).
Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).
Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16 785–794 (ACM Press, 2016). https://doi.org/10.1145/2939672.2939785.
Ripley, B. D. Modern applied statistics with S. (springer, 2002).
Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. in Proc. 14th International Joint Conference on Artificial Intelligence vol. 14 1137–1145 (Morgan Kaufmann Publishers, 1995).
Doan, H. T. X. & Foody, G. M. Increasing soft classification accuracy through the use of an ensemble of classifiers. Int. J. Remote Sens. 28, 4609–4623 (2007).
Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1, 67–82 (1997).
Wolpert, D. H. Stacked generalization. Neural Netw. 5, 241–259 (1992).
Willmott, C. J. & Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005).
Hand, D. J. & Till, R. J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45, 171–186 (2001).
Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).
Stekhoven, D. J. & Bühlmann, P. MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).
Loupy, A. Virtual biopsy system. https://doi.org/10.7303/syn51702348