Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all)
Abstract :
[en] Abundant carbon was identified on Mercury by MESSENGER, which is interpreted as the remnant of a primordial graphite flotation crust, suggesting that the magma ocean and core were saturated in carbon. We re-evaluate carbon speciation in Mercury's interior in light of the high pressure-temperature experiments, thermodynamic models and the most recent geophysical models of the internal structure of the planet. Although a sulfur-free melt would have been in the stability field of graphite, sulfur dissolution in the melt under the unique reduced conditions depressed the sulfur-rich liquidus to temperatures spanning the graphite-diamond transition. Here we show it is possible, though statistically unlikely, that diamond was stable in the magma ocean. However, the formation of a solid inner core caused diamond to crystallize from the cooling molten core and formation of a diamond layer becoming thicker with time.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Xu, Yongjiang ; Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
Lin, Yanhao ; Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China. yanhao.lin@hpstar.ac.cn
Wu, Peiyan; Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China ; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
Namur, Olivier; Earth and Environmental Sciences, KU Leuven, 3001, Leuven, Belgium
Zhang, Yishen; Earth and Environmental Sciences, KU Leuven, 3001, Leuven, Belgium
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Language :
English
Title :
A diamond-bearing core-mantle boundary on Mercury.
NSCF - National Natural Science Foundation of China
Funding text :
This research was supported by a grant from the National Natural Science Foundation of China awarded to Y.L. (42250105). The Center for High Pressure Science and Technology Advanced Research is supported by the National Science Foundation of China (Grants U1530402 and U1930401). BC is a Research Associate of the Belgian Fund for Scientific Research-FNRS and acknowledges funding from the ESA PRODEX Program (Grant 4000142722).
S.L. Murchie et al. Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material Icarus 2015 254 287 305 2015Icar.254.287M 1:CAS:528:DC%2BC2MXlvFCjs7s%3D 10.1016/j.icarus.2015.03.027
P.N. Peplowski et al. Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer Planet. Space Sci. 2015 108 98 107 2015P&SS.108..98P 1:CAS:528:DC%2BC2MXislSmurc%3D 10.1016/j.pss.2015.01.008
P.N. Peplowski et al. Remote sensing evidence for an ancient carbon-bearing crust on Mercury Nat. Geosci. 2016 9 273 276 2016NatGe..9.273P 1:CAS:528:DC%2BC28XjslGqtro%3D 10.1038/ngeo2669
R. Xu Z. Xiao Y. Wang J. Cui Less than one weight percent of graphite on the surface of Mercury Nat. Astron. 2024 8 280 289 10.1038/s41550-023-02169-5
R.L. Klima B.W. Denevi C.M. Ernst S.L. Murchie P.N. Peplowski Global distribution and spectral properties of low-reflectance material on Mercury Geophys. Res. Lett. 2018 45 2945 2953 2018GeoRL.45.2945K 1:CAS:528:DC%2BC1cXot1Okurs%3D 10.1002/2018GL077544
L.H. Lark J.W. Head C. Huber Evidence for a carbon-rich Mercury from the distribution of low-reflectance material (LRM) associated with large impact basins Earth Planet. Sci. Lett. 2023 613 118192 1:CAS:528:DC%2BB3sXpt1ejtL0%3D 10.1016/j.epsl.2023.118192
M. Bruck Syal P.H. Schultz M.A. Riner Darkening of Mercury’s surface by cometary carbon Nat. Geosci. 2015 8 352 356 2015NatGe..8.352S 10.1038/ngeo2397
F.M. McCubbin M.A. Riner K.E. Vander Kaaden L.K. Burkemper Is Mercury a volatile-rich planet? Geophys. Res. Lett. 2012 39 L09202 2012GeoRL.39.9202M 10.1029/2012GL051711
M.Y. Zolotov et al. The redox state, FeO content, and origin of sulfur-rich magmas on Mercury J. Geophys. Res. Planets 2013 118 138 146 2013JGRE.118.138Z 1:CAS:528:DC%2BC3sXovFWgsbk%3D 10.1029/2012JE004274
O. Namur B. Charlier F. Holtz C. Cartier C. McCammon Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury Earth Planet. Sci. Lett. 2016 448 102 114 2016E&PSL.448.102N 1:CAS:528:DC%2BC28XosFWgs7c%3D 10.1016/j.epsl.2016.05.024
N.L. Chabot E.A. Wollack R.L. Klima M.E. Minitti Experimental constraints on Mercury’s core composition Earth Planet. Sci. Lett. 2014 390 199 208 2014E&PSL.390.199C 1:CAS:528:DC%2BC2cXjtFSrur0%3D 10.1016/j.epsl.2014.01.004
E.S. Steenstra W. van Westrenen Geochemical constraints on core-mantle differentiation in Mercury and the aubrite parent body Icarus 2020 340 113621 1:CAS:528:DC%2BB3cXhslSju7Y%3D 10.1016/j.icarus.2020.113621
K.E. Vander Kaaden F.M. McCubbin A.A. Turner D.K. Ross Constraints on the abundances of carbon and silicon in Mercury’s core from experiments in the Fe-Si-C system J. Geophys. Res. Planets 2020 125 e2019JE006239 2020JGRE.12506239V 10.1029/2019JE006239
Y. Li R. Dasgupta K. Tsuno The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: Implications for core–mantle differentiation and degassing of magma oceans and reduced planetary mantles Earth Planet. Sci. Lett. 2015 415 54 66 2015E&PSL.415..54L 1:CAS:528:DC%2BC2MXitVyltb4%3D 10.1016/j.epsl.2015.01.017
P. Ardia M.M. Hirschmann A.C. Withers B.D. Stanley Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere–magma ocean–core partitioning of volatiles and to the evolution of the Martian atmosphere Geochim. Cosmochim. Acta 2013 114 52 71 2013GeCoA.114..52A 10.1016/j.gca.2013.03.028
L. Noack A. Rivoldini T. Van Hoolst Volcanism and outgassing of stagnant-lid planets: Implications for the habitable zone Phys. Earth Planet. Inter. 2017 269 40 57 2017PEPI.269..40N 10.1016/j.pepi.2017.05.010
F. Gaillard et al. Redox controls during magma ocean degassing Earth Planet. Sci. Lett. 2022 577 117255 1:CAS:528:DC%2BB3MXit1ygtb%2FM 10.1016/j.epsl.2021.117255
N. Jäggi et al. Evolution of Mercury’s earliest atmosphere Planet. Sci. J. 2021 2 230 10.3847/PSJ/ac2dfb
Y. Li R. Dasgupta K. Tsuno Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon J. Geophys. Res. Planets 2017 122 1300 1320 2017JGRE.122.1300L 1:CAS:528:DC%2BC2sXhtFCmtLjP 10.1002/2017JE005289
H. Keppler G. Golabek Graphite floatation on a magma ocean and the fate of carbon during core formation Geochem. Perspect. Lett. 2019 11 12 17 10.7185/geochemlet.1918
K.E. Vander Kaaden F.M. McCubbin Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle J. Geophys. Res. Planets 2015 120 195 209 2015JGRE.120.195V 10.1002/2014JE004733
J.V. Smith et al. Petrologic history of the Moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks Proc. Apollo 11 Lunar Sci. Conf. 1970 1 897 925 1970LPSC..1.897S
P.H. Warren The magma ocean concept and lunar evolution Annu. Rev. Earth Planet. Sci. 1985 13 201 240 1985AREPS.13.201W 1:CAS:528:DyaL2MXkt1GjtL4%3D 10.1146/annurev.ea.13.050185.001221
A. Genova et al. Geodetic evidence that Mercury has a solid inner core Geophys. Res. Lett. 2019 46 3625 3633 2019GeoRL.46.3625G 1:CAS:528:DC%2BC1MXot1Shsbs%3D 31359894 6662718 10.1029/2018GL081135
S. Goossens et al. Evaluation of recent measurements of Mercury’s moments of inertia and tides using a comprehensive Markov chain Monte Carlo method Planet. Sci. J. 2022 3 37 10.3847/PSJ/ac4bb8
S. Bertone et al. Deriving Mercury geodetic parameters with altimetric crossovers from the Mercury laser altimeter (MLA) J. Geophys. Res. Planets 2021 126 2021JGRE.12606683B 10.1029/2020JE006683
J.-L. Margot et al. Mercury’s moment of inertia from spin and gravity data J. Geophys. Res. Planets 2012 117 E00L09 10.1029/2012JE004161
G. Steinbrügge et al. Challenges on Mercury’s interior structure posed by the new measurements of its obliquity and tides Geophys. Res. Lett. 2021 48 e2020GL089895 2021GeoRL.4889895S 10.1029/2020GL089895
S.A. Hauck et al. The curious case of Mercury’s internal structure J. Geophys. Res. Planets 2013 118 1204 1220 2013JGRE.118.1204H 1:CAS:528:DC%2BC3sXhtVyrtbzE 10.1002/jgre.20091
Margot, J.-L., Hauck, S. A., Mazarico, E., Padovan, S. & Peale, S. J. Mercury’s internal structure. In Mercury: The View after MESSENGER, 4, 85-113 (Cambridge University Press, 2018).
M.E. Perry et al. The low-degree shape of Mercury Geophys. Res. Lett. 2015 42 6951 6958 2015GeoRL.42.6951P 10.1002/2015GL065101
Nittler, L. R., Chabot, N. L., Grove, T. L. & Peplowski, P. N. The chemical composition of Mercury. In Mercury: The View after MESSENGER, 2, 30-51 (Cambridge University Press, 2018).
Taylor, G. J. & Scott, E. R. D. Mercury. In Treatise on Geochemistry, 1, 477-485 (Elsevier, 2003).
S. Berthet V. Malavergne K. Righter Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes Geochim. Cosmochim. Acta 2009 73 6402 6420 2009GeCoA.73.6402B 1:CAS:528:DC%2BD1MXhtFWltL3I 10.1016/j.gca.2009.07.030
E. Jarosewich Chemical analyses of meteorites - A compilation of stony and iron meteorite analyses Meteoritics 1990 25 323 337 1990Metic.25.323J 1:CAS:528:DyaK3MXhvV2ntLo%3D 10.1111/j.1945-5100.1990.tb00717.x
E.S. Steenstra et al. Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database Icarus 2020 335 1:CAS:528:DC%2BC1MXhsF2rsbjO 10.1016/j.icarus.2019.113391
M.R. Kilburn B.J. Wood Metal–silicate partitioning and the incompatibility of S and Si during core formation Earth Planet. Sci. Lett. 1997 152 139 148 1997E&PSL.152.139K 1:CAS:528:DyaK2sXnvFOktrg%3D 10.1016/S0012-821X(97)00125-8
J.S. Knibbe et al. Mercury’s interior structure constrained by density and P-wave velocity measurements of liquid Fe-Si-C alloys J. Geophys. Res. Planets 2021 126 2021JGRE.12606651K 1:CAS:528:DC%2BB3MXit1ykt78%3D 10.1029/2020JE006651
L.R. Nittler et al. The major-element composition of Mercury’s surface from MESSENGER x-ray spectrometry Science 2011 333 1847 1850 2011Sci..333.1847N 1:CAS:528:DC%2BC3MXht1aisbnJ 21960623 10.1126/science.1211567
S.Z. Weider et al. Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer Earth Planet. Sci. Lett. 2015 416 109 120 2015E&PSL.416.109W 1:CAS:528:DC%2BC2MXisVSrsLs%3D 10.1016/j.epsl.2015.01.023
B.A. Anzures et al. Effect of sulfur speciation on chemical and physical properties of very reduced mercurian melts Geochim. Cosmochim. Acta 2020 286 1 18 2020GeCoA.286..1A 1:CAS:528:DC%2BB3cXhsVCktLzK 10.1016/j.gca.2020.07.024
N. Riel B.J.P. Kaus E.C.R. Green N. Berlie MAGEMin, an efficient Gibbs energy minimizer: application to igneous systems Geochem. Geophys. Geosyst. 2022 23 e2022GC010427 2022GGG..2310427R 10.1029/2022GC010427
T.J.B. Holland E.C.R. Green R. Powell Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr J. Petrol. 2018 59 881 900 2018JPet..59.881H 1:CAS:528:DC%2BC1cXitlOmtrvF 10.1093/petrology/egy048
O. Namur et al. Melting processes and mantle sources of lavas on Mercury Earth Planet. Sci. Lett. 2016 439 117 128 2016E&PSL.439.117N 1:CAS:528:DC%2BC28Xhsl2gsbg%3D 10.1016/j.epsl.2016.01.030
H.W. Day A revised diamond-graphite transition curve Am. Min. 2012 97 52 62 2012AmMin.97..52D 1:CAS:528:DC%2BC38XovV2rtQ%3D%3D 10.2138/am.2011.3763
Tonks, W. B. Melosh, H. J. The physics of crystal settling and suspension in a turbulent magma ocean. In Origin of the Earth, 151-174 (Oxford Univerisity Press, 1990).
Solomatov, V. Magma Oceans and Primordial Mantle Differentiation. In Treatise on Geophysics, 8, 91-119 (Elsevier, 2007).
M.D. Mouser et al. Experimental investigation of Mercury’s magma ocean viscosity: implications for the formation of Mercury’s cumulate mantle, its subsequent dynamic evolution, and crustal petrogenesis J. Geophys. Res. Planets 2021 126 e2021JE006946 2021JGRE.12606946M 1:CAS:528:DC%2BB3MXisFyhs77N 10.1029/2021JE006946
J.S. Knibbe W. van Westrenen The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction J. Geophys. Res. Planets 2015 120 1904 1923 2015JGRE.120.1904K 1:CAS:528:DC%2BC2MXitVagsbfE 10.1002/2015JE004908
R. Tao Y. Fei High-pressure experimental constraints of partitioning behavior of Si and S at the Mercury’s inner core boundary Earth Planet. Sci. Lett. 2021 562 116849 1:CAS:528:DC%2BB3MXltlynt7c%3D 10.1016/j.epsl.2021.116849
E. Edmund et al. The Fe-FeSi phase diagram at Mercury’s core conditions Nat. Commun. 2022 13 2022NatCo.13.387E 1:CAS:528:DC%2BB38Xhs1Cgtbc%3D 35046422 8770642 10.1038/s41467-022-27991-9
F. Miozzi et al. The Fe-Si-C system at extreme P-T conditions: A possible core crystallization pathway for reduced planets Geochim. Cosmochim. Acta 2022 322 129 142 2022GeCoA.322.129M 1:CAS:528:DC%2BB38XhslCrtL8%3D 10.1016/j.gca.2022.01.013
B.J. Wood Carbon in the core Earth Planet. Sci. Lett. 1993 117 593 607 1993E&PSL.117.593W 1:CAS:528:DyaK3sXltVSiuro%3D 10.1016/0012-821X(93)90105-I
O.T. Lord M.J. Walter R. Dasgupta D. Walker S.M. Clark Melting in the Fe–C system to 70 GPa Earth Planet. Sci. Lett. 2009 284 157 167 2009E&PSL.284.157L 1:CAS:528:DC%2BD1MXnvVaktbs%3D 10.1016/j.epsl.2009.04.017
M. Dumberry A. Rivoldini Mercury’s inner core size and core-crystallization regime Icarus 2015 248 254 268 2015Icar.248.254D 1:CAS:528:DC%2BC2cXhvV2mt7vM 10.1016/j.icarus.2014.10.038
A.L. Edgington et al. The top-down crystallisation of Mercury’s core Earth Planet. Sci. Lett. 2019 528 115838 1:CAS:528:DC%2BC1MXhvVaju7%2FE 10.1016/j.epsl.2019.115838
A. Tsuzuki S. Sago S.I. Hirano S. Naka High temperature and pressure preparation and properties of iron carbides Fe7C3 and Fe3C J. Mater. Sci. 1984 19 2513 2518 1984JMatS.19.2513T 1:CAS:528:DyaL2cXlvFGqtbs%3D 10.1007/BF00550805
L.E. Shterenberg V.N. Slesarev I.A. Korsunskaya D.S. Kamenetskaya The experimental study of the interaction between melt, carbides and diamond in the iron–carbon system at high pressures High. Temp. -High. Press. 1975 7 517 522
Y. Nakajima E. Takahashi T. Suzuki K.-I. Funakoshi “Carbon in the core” revisited Phys. Earth Planet. Inter. 2009 174 202 211 2009PEPI.174.202N 1:CAS:528:DC%2BD1MXlslyqt7s%3D 10.1016/j.pepi.2008.05.014
H.M. Strong R.M. Chrenko Diamond growth rates and physical properties of laboratory-made diamond J. Phys. Chem. 1971 75 1838 1843 1:CAS:528:DyaE3MXksVWgt7w%3D 10.1021/j100681a014
N. Tosi M. Grott A.C. Plesa D. Breuer Thermochemical evolution of Mercury’s interior J. Geophys. Res. Planets 2013 118 2474 2487 2013JGRE.118.2474T 1:CAS:528:DC%2BC2cXotVyqtQ%3D%3D 10.1002/jgre.20168
J.S. Knibbe W. van Westrenen The thermal evolution of Mercury’s Fe–Si core Earth Planet. Sci. Lett. 2018 482 147 159 2018E&PSL.482.147K 1:CAS:528:DC%2BC2sXhsl2lt7jN 10.1016/j.epsl.2017.11.006
D.E. Smith et al. Gravity field and internal structure of Mercury from MESSENGER Science 2012 336 214 217 2012Sci..336.214S 1:CAS:528:DC%2BC38Xlt1eiu70%3D 22438509 10.1126/science.1218809
C. Cartier et al. No FeS layer in Mercury? Evidence from Ti/Al measured by MESSENGER Earth Planet. Sci. Lett. 2020 534 116108 1:CAS:528:DC%2BB3cXhs1Krsr4%3D 10.1016/j.epsl.2020.116108
H. Pirotte et al. Internal differentiation and volatile budget of Mercury inferred from the partitioning of heat-producing elements at highly reduced conditions Icarus 2023 405 1:CAS:528:DC%2BB3sXhsFOju7fL 10.1016/j.icarus.2023.115699
R.S. Clarke D.E. Appleman D.R. Ross An Antarctic iron meteorite contains preterrestrial impact-produced diamond and lonsdaleite Nature 1981 291 396 398 1981Natur.291.396C 1:CAS:528:DyaL3MXltFyktL4%3D 10.1038/291396a0
F. Nabiei et al. A large planetary body inferred from diamond inclusions in a ureilite meteorite Nat. Commun. 2018 9 2018NatCo..9.1327N 29666368 5904174 10.1038/s41467-018-03808-6
F. Nestola et al. Impact shock origin of diamonds in ureilite meteorites Proc. Natl Acad. Sci. USA 2020 117 25310 25318 2020PNAS.11725310N 1:CAS:528:DC%2BB3cXitVKktL%2FI 32989146 7568235 10.1073/pnas.1919067117
M.M. Hirschmann R. Dasgupta The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles Chem. Geol. 2009 262 4 16 2009ChGeo.262..4H 1:CAS:528:DC%2BD1MXntFansr0%3D 10.1016/j.chemgeo.2009.02.008
M.M. Hirschmann Magma ocean influence on early atmosphere mass and composition Earth Planet. Sci. Lett. 2012 341-344 48 57 2012E&PSL.341..48H 1:CAS:528:DC%2BC38XhtFCmtLzL 10.1016/j.epsl.2012.06.015
P. Cartigny M. Palot E. Thomassot J.W. Harris Diamond formation: A stable isotope perspective Annu. Rev. Earth Planet. Sci. 2014 42 699 732 2014AREPS.42.699C 1:CAS:528:DC%2BC2cXht1WqsLfJ 10.1146/annurev-earth-042711-105259
J.C. Bond D.P. O’Brien D.S. Lauretta The compositional diversity of extrasolar terrestrial planets. I. In situ simulations Astrophys. J. 2010 715 1050 2010ApJ..715.1050B 1:CAS:528:DC%2BC3cXot1egur4%3D 10.1088/0004-637X/715/2/1050
H. Allen-Sutter et al. Oxidation of the interiors of carbide exoplanets Planet. Sci. J. 2020 1 39 10.3847/PSJ/abaa3e
D. Kraus et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions Nat. Astron. 2017 1 606 611 2017NatAs..1.606K 10.1038/s41550-017-0219-9
B. Cheng S. Hamel M. Bethkenhagen Thermodynamics of diamond formation from hydrocarbon mixtures in planets Nat. Commun. 2023 14 2023NatCo.14.1104C 1:CAS:528:DC%2BB3sXkt1Ogtbc%3D 36843123 9968715 10.1038/s41467-023-36841-1
Cannon, K. M. Mercury and other diamond encrusted planets. 53rd LPSC, 1157 (2022).
R. Dasgupta M.M. Hirschmann The deep carbon cycle and melting in Earth’s interior Earth Planet. Sci. Lett. 2010 298 1 13 2010E&PSL.298..1D 1:CAS:528:DC%2BC3cXht1Cgur7J 10.1016/j.epsl.2010.06.039
M.W. Broadley D.V. Bekaert L. Piani E. Füri B. Marty Origin of life-forming volatile elements in the inner Solar System Nature 2022 611 245 255 2022Natur.611.245B 1:CAS:528:DC%2BB38XivVCksLnO 36352134 10.1038/s41586-022-05276-x
C. Cartier B.J. Wood The role of reducing conditions in building Mercury Elements 2019 15 39 45 2019Eleme.15..39C 10.2138/gselements.15.1.39
H. Harder G. Schubert Sulfur in Mercury’s core? Icarus 2001 151 118 122 2001Icar.151.118H 1:CAS:528:DC%2BD3MXjvFKhs7c%3D 10.1006/icar.2001.6586
V. Malavergne M.J. Toplis S. Berthet J. Jones Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field Icarus 2010 206 199 209 2010Icar.206.199M 1:CAS:528:DC%2BC3cXitVamtrc%3D 10.1016/j.icarus.2009.09.001
A. Pommier K. Leinenweber T. Tran Mercury’s thermal evolution controlled by an insulating liquid outermost core? Earth Planet. Sci. Lett. 2019 517 125 134 2019E&PSL.517.125P 1:CAS:528:DC%2BC1MXosVemu7k%3D 10.1016/j.epsl.2019.04.022
U.R. Christensen A deep dynamo generating Mercury’s magnetic field Nature 2006 444 1056 1058 2006Natur.444.1056C 1:CAS:528:DC%2BD28XhtlemtLnI 17183319 10.1038/nature05342
S.J. Peale Does Mercury have a molten core? Nature 1976 262 765 766 1976Natur.262.765P 10.1038/262765a0
S.J. Peale Generalized Cassini’s laws Astron. J. 1969 74 483 489 1969AJ...74.483P 10.1086/110825
P. Wu Y. Xu Y. Lin A novel rapid cooling assembly design in a high-pressure cubic press apparatus Matter Radiat. Extrem. 2024 9 027402 10.1063/5.0176025
V.E. Bean et al. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report Phys. B+C. 1986 139-140 52 54 1986PhyBC.139..52B 1:CAS:528:DyaL28XksV2hsL4%3D 10.1016/0378-4363(86)90521-8
O. Degtyareva M.I. McMahon R.J. Nelmes High-pressure structural studies of group-15 elements High. Press. Res. 2004 24 319 356 2004HPR..24.319D 1:CAS:528:DC%2BD2MXhsVeisL0%3D 10.1080/08957950412331281057
L. Fang D. He C. Chen L. Ding X. Luo Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets High. Press. Res. 2007 27 367 374 2007HPR..27.367F 1:CAS:528:DC%2BD2sXpslakt7c%3D 10.1080/08957950701553796
E. Watson D. Wark J. Price J. Van Orman Mapping the thermal structure of solid-media pressure assemblies Contrib. Mineral. Petrol. 2002 142 640 652 2002CoMP.142.640W 1:CAS:528:DC%2BD38XhsVCgsr8%3D 10.1007/s00410-001-0327-4
M. Maurice et al. Onset of solid-state mantle convection and mixing during magma ocean solidification J. Geophys. Res. Planets 2017 122 577 598 2017JGRE.122.577M 10.1002/2016JE005250
R.R. Almeev F. Holtz J. Koepke F. Parat Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa Am. Min. 2012 97 1234 1240 2012AmMin.97.1234A 1:CAS:528:DC%2BC38XhtVOhsLrN 10.2138/am.2012.4100
R.F. Katz M. Spiegelman C.H. Langmuir A new parameterization of hydrous mantle melting Geochem. Geophys. Geosyst. 2003 4 1073 2003GGG...4.1073K 10.1029/2002GC000433
E. Médard T. Grove The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models Contrib. Mineral. Petrol. 2008 155 417 432 2008CoMP.155.417M 10.1007/s00410-007-0250-4
F.D. Murnaghan The compressibility of media under extreme pressures Proc. Natl Acad. Sci. USA 1944 30 244 247 1944PNAS..30.244M 11643 1:STN:280:DC%2BD28zhvFGntA%3D%3D 16588651 1078704 10.1073/pnas.30.9.244