Differentiation; Ilmenite; KREEP basalt; Liquid immiscibility; Lunar magma ocean; Late stage; Magma ocean; Magmatisms; Residual melts; Silicate liquids; SiO 2; Geophysics; Geochemistry and Petrology; Space and Planetary Science; Earth and Planetary Sciences (miscellaneous)
Abstract :
[en] The latest stages of the lunar magma ocean (LMO) crystallization led to the formation of ilmenite-bearing cumulates and urKREEP, residual melts enriched in K, rare earth elements (REEs), P, and other incompatible elements. Those highly evolved lithologies had major impacts on the petrogenesis of lunar volcanic rocks and the compositional diversity of post-LMO magmatism resulting from mantle remelting. Here, we present new experimental results constraining the composition of the very last liquids produced during LMO crystallization. To test the potential role of silicate liquid immiscibility in the formation of urKREEP, synthetic samples representative of residual melts of bulk Moon compositions were placed in double platinum-graphite capsules at 1020–980 °C and 0.08–0.10 GPa in an internally-heated pressure vessel. The produced silicate liquids are multiply saturated with plagioclase, augite, silica phases, and ilmenite (± fayalitic olivine ± pigeonite). Our experiments show that the liquid line of descent reaches a two-liquid field at 1000 °C and >97% crystallization for a range of whole-Moon compositions. Under these conditions, a small proportion of silica-rich melt (70.0–71.4 wt.% SiO2, 6.4–7.3 wt.% FeO, 5.4–6.1 wt.% K2O, 0.2–0.3 wt.% P2O5) coexists within an abundant Fe-rich melt (42.6–44.1 wt.% SiO2, 27.6–28.8 wt.% FeO, 0.9–1.0 wt.% K2O, 2.8–3.2 wt.% P2O5) with sharp two-liquid interfaces. Our experimental results also constrain the relative onset of ilmenite crystallization compared to the development of immiscibility and indicate that an ilmenite-bearing layer formed in the lunar interior before immiscibility was attained. Using a self-consistent physicochemical LMO model, we constrain the thickness and depth of the ilmenite-bearing layer during LMO differentiation. The immiscible K-Si-rich and P-Fe-rich melts together also produced an immiscible urKREEP layer ∼2–6 km thick and ∼30–50 km deep depending on the trapped liquid fraction in the cumulate column (≤10%) and the thickness of the buoyant anorthosite crust (30–50 km). We provide constraints on the relationship between the compositions of immiscible urKREEP melts and those of KREEPy rocks. By modeling the mixing of KREEP-poor basalt and the immiscible melt pairs, we reproduce the K and P enrichments and apparent decoupling of K from P in KREEPy rocks. Our results highlight that processes such as the assimilation of evolved heterogeneous mantle lithologies may be involved in hybridization during post-LMO magmatism. The immiscible K-Si-rich lithology may also have contributed to lunar silicic magmatism.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Zhang, Yishen ; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium ; Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, United States
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique ; Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, United States ; Institut für Erdsystemwissenschaften, IESW, Abteilung Mineralogie, Leibniz Universität Hannover, Hannover, Germany
Krein, Stephanie B.; Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, United States
Grove, Timothy L.; Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, United States
Namur, Olivier ; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium ; Institut für Erdsystemwissenschaften, IESW, Abteilung Mineralogie, Leibniz Universität Hannover, Hannover, Germany
Holtz, Francois ; Institut für Erdsystemwissenschaften, IESW, Abteilung Mineralogie, Leibniz Universität Hannover, Hannover, Germany
Language :
English
Title :
The very late-stage crystallization of the lunar magma ocean and the composition of immiscible urKREEP
BC acknowledges support by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. This work was supported by the Fonds de la Recherche Scientifique \u2013 FNRS under Grant 33653710. BC is a Research Associate of the Belgian Fund for Scientific Research-FNRS. Discussions with Oliver Shorttle, Attilio Rivoldini, and Dian Ji are highly appreciated. R. Dennen is thanked for his help in editing the manuscript. We thank Frederic Moynier for editorial handling. Constructive comments from Nick Dygert and an anonymous reviewer significantly improved the quality of the paper.
Barnes, J.J., Tartese, R., Anand, M., McCubbin, F.M., Neal, C.R., Franchi, I.A., Early degassing of lunar urKREEP by crust-breaching impact (s). Earth Planet. Sci. Lett. 447 (2016), 84–94.
Benne, D., Behrens, H., Water solubility in haplobasaltic melts. Eur. J. Mineral. 15 (2003), 803–814.
Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W., Koepke, J., A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am. Mineralog. 87 (2002), 1717–1726.
Cameron, A.G., Ward, W.R., The origin of the Moon. Abstracts of the Lunar and Planetary Science Conference, 7, 1976, 120 Page(1976).
Canup, R.M., Forming a Moon with an Earth-like composition via a giant impact. Science (1979) 338 (2012), 1052–1055.
Charlier, B., Grove, T.L., Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral Petrol. 164 (2012), 27–44, 10.1007/s00410-012-0723-y.
Charlier, B., Grove, T.L., Namur, O., Holtz, F., Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon. Geochim. Cosmochim. Acta 234 (2018), 50–69, 10.1016/j.gca.2018.05.006.
Chevrel, S.D., Pinet, P.C., Head, J.W., Gruithuisen domes region: a candidate for an extended nonmare volcanism unit on the Moon. J. Geophys. Res.: Planet. 104 (1999), 16515–16529, 10.1029/1998JE900007.
Cronberger, K., Neal, C.R., KREEP basalt 15382: not as pristine as originally thought. 50th Annual Lunar and Planetary Science Conference, 2019, 2444.
Cronberger, K., Neal, C.R., KREEP basalt petrogenesis: insights from 15434,181. Meteorit. Planet. Sci. 52 (2017), 827–841, 10.1111/maps.12837.
de Vries, J., van den Berg, A., van Westrenen, W., Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates. Earth Planet. Sci. Lett. 292 (2010), 139–147.
Dixon, S., Rutherford, M.J., Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth Planet. Sci. Lett. 45 (1979), 45–60.
Dowty, S., Keil, K., Prinz, M., Gros, J., Takahashi, H., Meteorite-free Apollo 15 crystalline KREEP. Lunar Science Conference, 7th, Houston, Tex., March 15-19, 1976, Proceedings, 2, 1976, Pergamon Press, Inc., New York, 1833–1844 1976pp. 1833–1844.
Drake, M.J., McCallum, I.S., McKay, G.A., Weill, D.F., Mineralogy and petrology of Apollo 12 sample no. 12013: a progress report. Earth Planet. Sci. Lett. 9 (1970), 103–123.
Dygert, N., Hirth, G., Liang, Y., A flow law for ilmenite in dislocation creep: implications for lunar cumulate mantle overturn. Geophys. Res. Lett. 43 (2016), 532–540.
Elardo, S.M., Draper, D.S., Shearer, C.K. Jr, Lunar Magma Ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim. Cosmochim. Acta 75 (2011), 3024–3045.
Elardo, S.M., Laneuville, M., McCubbin, F.M., Shearer, C.K., Early crust building enhanced on the Moon's nearside by mantle melting-point depression. Nat. Geosci. 13 (2020), 339–343, 10.1038/s41561-020-0559-4.
Elkins-Tanton, L.T., Magma oceans in the inner solar system. Annu. Rev. Earth. Planet. Sci. 40 (2012), 113–139.
Elkins-Tanton, L.T., Burgess, S., Yin, Q.-Z., The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304 (2011), 326–336.
Elkins-Tanton, L.T., Van Orman, J.A., Hager, B.H., Grove, T.L., Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet. Sci. Lett. 196 (2002), 239–249.
Elphic, R.C., Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Maurice, S., Binder, A.B., Lucey, P.G., Lunar rare earth element distribution and ramifications for FeO and TiO2: lunar Prospector neutron spectrometer observations. J. Geophys. Res.: Planet. 105 (2000), 20333–20345.
Gaffney, A.M., Borg, L.E., A young solidification age for the lunar magma ocean. Geochim. Cosmochim. Acta 140 (2014), 227–240.
Ghiorso, M.S., Carmichael, I.S.E., A regular solution model for met-aluminous silicate liquids: applications to geothermometry, immiscibility, and the source regions of basic magmas. Contr. Mineral. and Petrol. 71 (1980), 323–342, 10.1007/BF00374706.
Glotch, T.D., Lucey, P.G., Bandfield, J.L., Greenhagen, B.T., Thomas, I.R., Elphic, R.C., Bowles, N.E., Wyatt, M.B., Allen, C.C., Donaldson Hanna, K.L., Identification of highly silicic features on the Moon. 41st Annual Lunar and Planetary Science Conference, 2010, 1780.
Greenwood, J.P., Sakamoto, N., Itoh, S., Warren, P.H., Singer, J.A., Yanai, K., Yurimoto, H., The lunar magma ocean volatile signature recorded in chlorine-rich glasses in KREEP basalts 15382 and 15386. Geochem. J. 51 (2017), 105–114.
Hagerty, J.J., Lawrence, D.J., Hawke, B.R., Vaniman, D.T., Elphic, R.C., Feldman, W.C., Refined thorium abundances for lunar red spots: implications for evolved, nonmare volcanism on the Moon. J. Geophys. Res.: Planet., 2006, 111.
Herbert, F., Time-dependent lunar density models. Lunar and Planetary Science Conference Proceedings, 1980, 2015–2030.
Hess, P.C., Petrogenesis of lunar troctolites-Implications for the Moon and its evolution. Lunar and Planetary Science Conference, 2000, 1389.
Hess, P.C., Parmentier, E.M., Thermal evolution of a thicker KREEP liquid layer. J. Geophys. Res.: Planet. 106 (2001), 28023–28032.
Hess, P.C., Parmentier, E.M., A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134 (1995), 501–514.
Hess, P.C., Rutherford, M.J., Campbell, H.W., Ilmenite crystallization in nonmare basalt-Genesis of KREEP and high-Ti mare basalt. Lunar and Planetary Science Conference Proceedings, 1978, 705–724.
Hess, P.C., Rutherford, M.J., Guillemette, R.N., Ryerson, F.J., Tuchfeld, H.A., Residual products of fractional crystallization of lunar magmas-an experimental study. Lunar and Planetary Science Conference Proceedings, 1975, 895–909.
Honour, V.C., Holness, M.B., Partridge, J.L., Charlier, B., Microstructural evolution of silicate immiscible liquids in ferrobasalts. Contrib. Mineral Petrol., 174, 2019, 77, 10.1007/s00410-019-1610-6.
Hou, T., Charlier, B., Holtz, F., Veksler, I., Zhang, Z., Thomas, R., Namur, O., Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits. Nat. Commun., 9, 2018, 1415, 10.1038/s41467-018-03761-4.
Hou, T., Charlier, B., Namur, O., Schütte, P., Schwarz-Schampera, U., Zhang, Z., Holtz, F., Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron–fluorine deposit, South Africa. Geochim. Cosmochim. Acta 203 (2017), 303–322, 10.1016/j.gca.2017.01.025.
Hughes, S.S., Delano, J.W., Schmitt, R.A., Apollo 15 yellow-brown volcanic glass: chemistry and petrogenetic relations to green volcanic glass and olivine-normative mare basalts. Geochim. Cosmochim. Acta 52 (1988), 2379–2391.
Hui, H., Zhang, Y., Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim. Cosmochim. Acta 71 (2007), 403–416.
Irving, A.J., Chemical Variation and Fractionation of KREEP Basalt Magmas. 1977, Pergamon Press.
Jerde, E.A., Snyder, G.A., Taylor, L.A., Yun-Gang, L., Schmitt, R.A., The origin and evolution of lunar high-Ti basalts: periodic melting of a single source at Mare Tranquillitatis. Geochim. Cosmochim. Acta 58 (1994), 515–527.
Jin, Z., Hou, T., Zhu, M.H., Zhang, Y., Namur, O., Late-stage microstructures in Chang'E-5 basalt and implications for the evolution of lunar ferrobasalt. Am. Mineral., 2024, 10.2138/am-2024-9448.
Jing, J.-J., Lin, Y., Knibbe, J.S., van Westrenen, W., Garnet stability in the deep lunar mantle: constraints on the physics and chemistry of the interior of the Moon. Earth Planet. Sci. Lett., 584, 2022, 117491, 10.1016/j.epsl.2022.117491.
Jolliff, B.L., Large-scale separation of K-frac and REEP-frac in the source regions of Apollo impact-melt breccias, and a revised estimate of the KREEP composition. Int. Geol. Rev. 40 (1998), 916–935.
Jolliff, B.L., Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles. IN: Lunar and Planetary Science Conference, 21st, 1991, Lunar and Planetary Institute, Houston, TX, 101–118 Houston, TX, Mar. 12-16, 1990, Proceedings (A91-42332 17-91)1991pp. 101–118.
Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., Wieczorek, M.A., Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res.: Planet. 105 (2000), 4197–4216.
Kesson, S.E., Ringwood, A.E., Mare basalt petrogenesis in a dynamic moon. Earth Planet. Sci. Lett. 30 (1976), 155–163.
Kleine, T., Palme, H., Mezger, K., Halliday, A.N., Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science (1979) 310 (2005), 1671–1674.
Knibbe, J.S., van Westrenen, W., The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction. J. Geophys. Res.: Planet. 120 (2015), 1904–1923, 10.1002/2015JE004908.
Korotev, R.L., The great lunar hot spot and the composition and origin of the Apollo mafic (“LKFM”) impact-melt breccias. J. Geophys. Res.: Planet. 105 (2000), 4317–4345.
Kraettli, G., Schmidt, M.W., Liebske, C., Fractional crystallization of a basal lunar magma ocean: a dense melt-bearing garnetite layer above the core?. Icarus, 371, 2022, 114699, 10.1016/j.icarus.2021.114699.
Krawczynski, M.J., Grove, T.L., Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas. Geochim. Cosmochim. Acta 79 (2012), 1–19.
Kress, V.C., Carmichael, I.S., The compressibility of silicate liquids containing Fe 2 O 3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contribut. Mineral. Petrol. 108 (1991), 82–92.
Laneuville, M., Wieczorek, M.A., Breuer, D., Tosi, N., Asymmetric thermal evolution of the Moon. J. Geophys. Res.: Planet. 118 (2013), 1435–1452.
Lange, R.L., Carmichael, I.S., Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Rev. Mineral. Geochem. 24 (1990), 25–64.
Li, H., Zhang, N., Liang, Y., Wu, B., Dygert, N.J., Huang, J., Parmentier, E.M., Lunar cumulate mantle overturn: a model constrained by ilmenite rheology. J. Geophys. Res.: Planet. 124 (2019), 1357–1378.
Lin, Y., Shen, W., Liu, Y., Xu, L., Hofmann, B.A., Mao, Q., Tang, G.Q., Wu, F., Li, X.H., Very high-K KREEP-rich clasts in the impact melt breccia of the lunar meteorite SaU 169: new constraints on the last residue of the Lunar Magma Ocean. Geochim. Cosmochim. Acta 85 (2012), 19–40.
Lin, Y., Tronche, E.J., Steenstra, E.S., van Westrenen, W., Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean. Nat. Geosci. 10 (2017), 14–18.
Lin, Y., Tronche, E.J., Steenstra, E.S., van Westrenen, W., Experimental constraints on the solidification of a nominally dry lunar magma ocean. Earth Planet. Sci. Lett. 471 (2017), 104–116.
Longhi, J., Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim. Cosmochim. Acta 70 (2006), 5919–5934.
Longhi, J., Silicate liquid immiscibility in isothermal crystallization experiments. Lunar and Planetary Science Conference Proceedings, 1990, 13–24.
Longhi, J., Walker, D., Grove, T.L., Stolper, E., Hays, J.F., The petrology of the Apollo 17 mare basalts. Lunar Science Conference, 5th, Houston, Tex., March 18-22, 1974, Proceedings, 1, 1974, New York, Pergamon Press, Inc., 447–469 1974Research Supported by Harvard University; pp. 447–469.
Maurice, M., Tosi, N., Hüttig, C., Small-scale overturn of high-Ti cumulates promoted by the long lifetime of the lunar magma ocean. J. Geophys. Res.: Planet., 129, 2024, e2023JE008060.
McCubbin, F.M., Jolliff, B.L., Nekvasil, H., Carpenter, P.K., Zeigler, R.A., Steele, A., Elardo, S.M., Lindsley, D.H., Fluorine and chlorine abundances in lunar apatite: implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochim. Cosmochim. Acta 75 (2011), 5073–5093.
McCubbin, F.M., Vander Kaaden, K.E., Tartèse, R., Boyce, J.W., Mikhail, S., Whitson, E.S., Bell, A.S., Anand, M., Franchi, I.A., Wang, J., Hauri, E.H., Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C. Am. Mineralog. 100 (2015), 1790–1802, 10.2138/am-2015-5233.
McKay, G.A., Wiesmann, H., Bansal, B.M., Shih, C.-Y., Petrology, chemistry, and chronology of Apollo 14 KREEP basalts. Lunar and Planetary Science Conference Proceedings, 1979, 181–205.
McKay, G.A., Wiesmann, H., Nyquist, L.E., Wooden, J.L., Bansal, B.M., Petrology, chemistry, and chronology of 14078-Chemical constraints on the origin of KREEP. Lunar and Planetary Science Conference, 9th, Houston, Tex., March 13-17, 1978, Proceedings, 1, 1978, Pergamon Press, Inc., New York, 661–687 1978pp. 661–687.
McKenzie, D., Compaction and crystallization in magma chambers: towards a model of the skaergaard intrusion. J. Petrol. 52 (2011), 905–930, 10.1093/petrology/egr009.
Neal, C.R., Donohue, P., Fagan, A.L., O'Sullivan, K., Oshrin, J., Roberts, S., Distinguishing between basalts produced by endogenic volcanism and impact processes: a non-destructive method using quantitative petrography of lunar basaltic samples. Geochim. Cosmochim. Acta 148 (2015), 62–80, 10.1016/j.gca.2014.08.020.
Neal, C.R., Taylor, L.A., Metasomatic products of the lunar magma ocean: the role of KREEP dissemination. Geochim. Cosmochim. Acta 53 (1989), 529–541.
Nyquist, L.E., Lunar Rb-Sr chronology. Physics and Chemistry of the Earth, 10, 1977.
Nyquist, L.E., Hubbard, N.J., Gast, P.W., Bansal, B.M., Weismann, H., Jahn, B., Rb-Sr systematics for chemically defined Apollo 15 and 16 materials. Proceedings of the Lunar Science Conference, 4, 1973, 1823 p. 1823.
O'Neill, H.S.C., The origin of the Moon and the early history of the Earth-a chemical model. Part 1: The Moon. Geocheim. Cosmochim. Acta 55 (1991), 1135–1157.
Parmentier, E.M., Zhong, S., Zuber, M.T., Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP?. Earth Planet. Sci. Lett. 201 (2002), 473–480.
Pernet-Fisher, J.F., Howarth, G.H., Liu, Y., Chen, Y., Taylor, L.A., Estimating the lunar mantle water budget from phosphates: complications associated with silicate-liquid-immiscibility. Geochim. Cosmochim. Acta 144 (2014), 326–341.
Prissel, K.B., Krawczynski, M.J., Nie, N.X., Dauphas, N., Aarons, S.M., Heard, A.W., Hu, M.Y., Alp, E.E., Zhao, J., Fractionation of iron and titanium isotopes by ilmenite and the isotopic compositions of lunar magma ocean cumulates. Geochimica et Cosmochimica Acta S0016703724000164, 2024, 10.1016/j.gca.2024.01.006.
Qian, Y., She, Z., He, Q., Xiao, L., Wang, Z., Head, J.W., Sun, L., Wang, Y., Wu, B., Wu, X., Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat. Astron. 7 (2023), 287–297.
Rapp, J.F., Draper, D.S., Fractional crystallization of the lunar magma ocean: updating the dominant paradigm. Meteorit. Planet. Sci. 53 (2018), 1432–1455.
Ringwood, A.E., Kesson, S.E., A dynamic model for mare basalt petrogenesis. Lunar Science Conference, 7th, Houston, Tex., March 15-19, 1976, Proceedings, 2, 1976, Pergamon Press, Inc., New York, 1697–1722 1976pp. 1697–1722.
Rivoldini, A., Van Hoolst, T., Verhoeven, O., The interior structure of Mercury and its core sulfur content. Icarus 201 (2009), 12–30.
Robinson, K.L., Barnes, J.J., Nagashima, K., Thomen, A., Franchi, I.A., Huss, G.R., Anand, M., Taylor, G.J., Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188 (2016), 244–260.
Roedder, E., Weiblen, P.W., Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks. Science (1979) 167 (1970), 641–644.
Rutherford, M.J., Hess, P.C., Daniel, G.H., Experimental liquid line of descent and liquid immiscibility for basalt 70017. Lunar and Planetary Science Conference Proceedings, 1974, 569–583.
Ryder, G., Quenching and disruption of lunar KREEP lava flows by impacts. Nature 336 (1988), 751–754.
Ryder, G., Petrographic evidence for nonlinear cooling rates and a volcanic origin for Apollo 15 KREEP basalts. J. Geophys. Res.: Solid Earth 92 (1987), E331–E339.
Ryder, G., Bower, J.F., Poikilitic KREEP impact melts in the Apollo 14 white rocks. Lunar Science Conference, 7th, Houston, Tex., March 15-19, 1976, Proceedings, 2, 1976, Pergamon Press, Inc., New York, 1925–1948 1976pp. 1925–1948.
Ryder, G., Stoeser, D.B., Wood, J.A., Apollo 17 KREEPy basalt: a rock type intermediate between mare and KREEP basalts. Earth Planet. Sci. Lett. 35 (1977), 1–13.
Ryerson, F.J., Hess, P.C., The role of P2O5 in silicate melts. Geochim. Cosmochim. Acta 44 (1980), 611–624.
Ryerson, F.J., Hess, P.C., Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta 42 (1978), 921–932.
Schmidt, M.W., Connolly, J.A.D., Gunther, D., Bogaerts, M., Element partitioning: the role of melt structure and composition. Science (1979) 312 (2006), 1646–1650.
Schmidt, M.W., Kraettli, G., Experimental crystallization of the Lunar Magma Ocean, initial selenotherm and density stratification, and implications for crust formation, overturn and the bulk silicate moon composition. J. Geophys. Res.: Planet., 127, 2022, e2022JE007187, 10.1029/2022JE007187.
Seddio, S.M., Jolliff, B.L., Korotev, R.L., Zeigler, R.A., Petrology and geochemistry of lunar granite 12032, 366-19 and implications for lunar granite petrogenesis. Am. Mineralog. 98 (2013), 1697–1713.
Shearer, C.K., Papike, J.J., Early crustal building processes on the moon: models for the petrogenesis of the magnesian suite. Geochim. Cosmochim. Acta 69 (2005), 3445–3461.
Shervais, J.W., McGee, J.J., Ion and electron microprobe study of troctolites, norite, and anorthosites from Apollo 14: evidence for urKREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks. Geochim. Cosmochim. Acta 62 (1998), 3009–3023.
Edited bySmith, J.V., Anderson, A.T., Newton, R.C., Olsen, E.J., Crewe, A.V., Isaacson, M.S., Johnson, D., Wyllie, P.J., Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Levinson, AA, (eds.) Geochimica et Cosmochimica Acta Supplement, Volume 1. Proceedings of the Apollo 11 Lunar Science Conference Held 5-8 January 1970 in Houston, TX. Volume 1: Mineraolgy and Petrology, 1970, Pergammon Press, New York, 897 Edited by1970p. 897.
Snyder, G.A., Taylor, L.A., Neal, C.R., A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56 (1992), 3809–3823, 10.1016/0016-7037(92)90172-F.
Solomatov, V., Magma oceans and primordial mantle differentiation. Evolut. Earth 9 (2007), 91–119.
Solomon, S.C., Longhi, J., Magma oceanography. I-thermal evolution. Lunar and Planetary Science Conference Proceedings, 1977, 583–599.
Taylor, G.J., Warner, R.D., Keil, K., Ma, M.-S., Schmitt, R.A., Silicate liquid immiscibility, evolved lunar rocks and the formation of KREEP. Lunar Highlands Crust, 1980, 339–352.
Taylor, S.R., Planetary Science: A lunar Perspective, 1982, Lunar and Planetary Institute, Houston, 502.
Taylor, S.R., Jakeš, P., The Geochemical Evolution of the Moon. 1974, Pergamon Press.
Tian, H.-C., Wang, H., Chen, Y., Yang, W., Zhou, Q., Zhang, C., Lin, H.-L., Huang, C., Wu, S.-T., Jia, L.-H., Xu, L., Zhang, D., Li, X.-G., Chang, R., Yang, Y.-H., Xie, L.-W., Zhang, D.-P., Zhang, G.-L., Yang, S.-H., Wu, F.-Y., Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane. Nature 600 (2021), 59–63, 10.1038/s41586-021-04119-5.
Tonks, W.B., Melosh, H.J., Magma ocean formation due to giant impacts. J. Geophys. Res.: Planet. 98 (1993), 5319–5333.
Tosi, N., Padovan, S., Mercury, Moon, Mars: Surface Expressions of Mantle Convection and Interior Evolution of Stagnant-Lid Bodies. Mantle Convection and Surface Expressions. 2021, 455–489.
Veksler, I.V., Dorfman, A.M., Danyushevsky, L.V., Jakobsen, J.K., Dingwell, D.B., Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contribut. Mineral. Petrol. 152 (2006), 685–702.
Warren, P.H., The origin of pristine KREEP-Effects of mixing between UrKREEP and the magmas parental to the Mg-rich cumulates. Lunar and Planetary Science Conference Proceedings, 1988, 233–241.
Warren, P.H., The magma ocean concept and lunar evolution. IN: Annual review of Earth and Planetary Sciences, 13, 1985, Annual Reviews, Inc., Palo Alto, CA, 201–240 198513, 201–240.
Warren, P.H., Jerde, E.A., Kallemeyn, G.W., Pristine Moon rocks: a “large” felsite and a metal-rich ferroan anorthosite. J. Geophys. Res.: Solid Earth 92 (1987), E303–E313.
Warren, P.H., Taylor, G.J., Keil, K., Shirley, D.N., Wasson, J.T., Petrology and chemistry of two “large” granite clasts from the moon. Earth Planet. Sci. Lett. 64 (1983), 175–185, 10.1016/0012-821X(83)90202-9.
Warren, P.H., Wasson, J.T., The origin of KREEP. Rev. Geophys. 17 (1979), 73–88, 10.1029/RG017i001p00073.
Watson, E.B., Two-liquid partition coefficients: experimental data and geochemical implications. Contribut. Mineral. Petrol. 56 (1976), 119–134.
Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Smith, D.E., Watkins, M.M., Williams, J.G., Zuber, M.T., The Crust of the Moon as Seen by GRAIL. Science (1979) 339 (2013), 671–675, 10.1126/science.1231530.
Wieczorek, M.A., Phillips, R.J., The “Procellarum KREEP Terrane”: implications for mare volcanism and lunar evolution. J. Geophys. Res.: Planet. 105 (2000), 20417–20430.
Edited byWood, J.A., Dickey, J.S. Jr, Marvin, U.B., Powell, B.N., Lunar anorthosites and a geophysical model of the moon. Levinson, AA, (eds.) Geochimica et Cosmochimica Acta Supplement, Volume 1. Proceedings of the Apollo 11 Lunar Science Conference Held 5-8 January 1970 in Houston, TX. Volume 1: Mineraolgy and Petrology, 1970, Pergammon Press, New York, 965 Edited by1970p. 965.
Xu, M., Jing, Z., Van Orman, J.A., Yu, T., Wang, Y., Experimental Evidence Supporting an Overturned Iron-Titanium-Rich Melt Layer in the Deep Lunar Interior. Geophys. Res. Lett., 49, 2022, e2022GL099066.
Yu, S., Tosi, N., Schwinger, S., Maurice, M., Breuer, D., Xiao, L., Overturn of ilmenite-bearing cumulates in a rheologically weak lunar mantle. J. Geophys. Res.: Planet. 124 (2019), 418–436.
Zhang, A.-C., Taylor, L.A., Wang, R.-C., Li, Q.-L., Li, X.-H., Patchen, A.D., Liu, Y., Thermal history of Apollo 12 granite and KREEP-rich rock: clues from Pb/Pb ages of zircon in lunar breccia 12013. Geochim. Cosmochim. Acta 95 (2012), 1–14.
Zhang, N., Ding, M., Zhu, M.-H., Li, Huacheng, Li, Haoyuan, Yue, Z., Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact. Nat. Geosci. 15 (2022), 37–41.
Zhang, N., Dygert, N., Liang, Y., Parmentier, E.M., The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophys. Res. Lett. 44 (2017), 6543–6552.
Zhang, Y., Namur, O., Charlier, B., Experimental study of high-Ti and low-Ti basalts: liquid lines of descent and silicate liquid immiscibility in large igneous provinces. Contribut. Mineral. Petrol., 178, 2023, 7.