Article (Scientific journals)
TILTomorrow today: dynamic factors predicting changes in intracranial pressure treatment intensity after traumatic brain injury.
Bhattacharyay, Shubhayu; van Leeuwen, Florian D; Beqiri, Erta et al.
2025In Scientific Reports, 15 (1), p. 95
Peer Reviewed verified by ORBi
 

Files


Full Text
41598_2024_Article_83862.pdf
Publisher postprint (7.12 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Data mining; Intensive care unit; Intracranial pressure; Machine learning; Therapy intensity level; Traumatic brain injury; Humans; Male; Female; Adult; Middle Aged; Prospective Studies; Neural Networks, Computer; Intracranial Hypertension/therapy; Intracranial Hypertension/physiopathology; Intracranial Hypertension/etiology; Algorithms; Brain Injuries, Traumatic/therapy; Brain Injuries, Traumatic/physiopathology; Intracranial Pressure; Intensive Care Units; Brain Injuries, Traumatic; Intracranial Hypertension; Multidisciplinary
Abstract :
[en] Practices for controlling intracranial pressure (ICP) in traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) vary considerably between centres. To help understand the rational basis for such variance in care, this study aims to identify the patient-level predictors of changes in ICP management. We extracted all heterogeneous data (2008 pre-ICU and ICU variables) collected from a prospective cohort (n = 844, 51 ICUs) of ICP-monitored TBI patients in the Collaborative European NeuroTrauma Effectiveness Research in TBI study. We developed the TILTomorrow modelling strategy, which leverages recurrent neural networks to map a token-embedded time series representation of all variables (including missing values) to an ordinal, dynamic prediction of the following day's five-category therapy intensity level (TIL(Basic)) score. With 20 repeats of fivefold cross-validation, we trained TILTomorrow on different variable sets and applied the TimeSHAP (temporal extension of SHapley Additive exPlanations) algorithm to estimate variable contributions towards predictions of next-day changes in TIL(Basic). Based on Somers' Dxy, the full range of variables explained 68% (95% CI 65-72%) of the ordinal variation in next-day changes in TIL(Basic) on day one and up to 51% (95% CI 45-56%) thereafter, when changes in TIL(Basic) became less frequent. Up to 81% (95% CI 78-85%) of this explanation could be derived from non-treatment variables (i.e., markers of pathophysiology and injury severity), but the prior trajectory of ICU management significantly improved prediction of future de-escalations in ICP-targeted treatment. Whilst there was no significant difference in the predictive discriminability (i.e., area under receiver operating characteristic curve) between next-day escalations (0.80 [95% CI 0.77-0.84]) and de-escalations (0.79 [95% CI 0.76-0.82]) in TIL(Basic) after day two, we found specific predictor effects to be more robust with de-escalations. The most important predictors of day-to-day changes in ICP management included preceding treatments, age, space-occupying lesions, ICP, metabolic derangements, and neurological function. Serial protein biomarkers were also important and may serve a useful role in the clinical armamentarium for assessing therapeutic needs. Approximately half of the ordinal variation in day-to-day changes in TIL(Basic) after day two remained unexplained, underscoring the significant contribution of unmeasured factors or clinicians' personal preferences in ICP treatment. At the same time, specific dynamic markers of pathophysiology associated strongly with changes in treatment intensity and, upon mechanistic investigation, may improve the timing and personalised targeting of future care.
Disciplines :
Anesthesia & intensive care
Author, co-author :
Bhattacharyay, Shubhayu;  Division of Anaesthesia, University of Cambridge, Cambridge, UK. shubhayu@hms.harvard.edu ; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. shubhayu@hms.harvard.edu ; Harvard Medical School, Boston, MA, USA. shubhayu@hms.harvard.edu
van Leeuwen, Florian D;  Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
Beqiri, Erta;  Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, UK
Åkerlund, Cecilia A I;  Department of Physiology and Pharmacology, Section for Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
Wilson, Lindsay;  Division of Psychology, University of Stirling, Stirling, UK
Steyerberg, Ewout W;  Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
Nelson, David W;  Department of Physiology and Pharmacology, Section for Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
Maas, Andrew I R;  Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium ; Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
Menon, David K;  Division of Anaesthesia, University of Cambridge, Cambridge, UK
Ercole, Ari;  Division of Anaesthesia, University of Cambridge, Cambridge, UK ; Cambridge Centre for Artificial Intelligence in Medicine, Cambridge, UK
CENTER-TBI investigators and participants
Other collaborator :
Ledoux, Didier  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service des soins intensifs généraux
Language :
English
Title :
TILTomorrow today: dynamic factors predicting changes in intracranial pressure treatment intensity after traumatic brain injury.
Publication date :
02 January 2025
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Research, England
Volume :
15
Issue :
1
Pages :
95
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 602150 - CENTER-TBI - Collaborative European NeuroTrauma Effectiveness Research in TBI
Funders :
Gates Cambridge Trust
Paul & Daisy Soros Fellowships for New Americans
MRC - Medical Research Council
EU - European Union
ZNS Hannelore Kohl Stiftung
One Mind
Integra LifeSciences (United States)
NIHR - National Institute for Health Research
Funding text :
This research was supported by the National Institute for Health Research (NIHR) Brain Injury MedTech Co-operative. CENTER-TBI was supported by the European Union 7th Framework programme (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA), from Integra LifeSciences Corporation (USA), and from NeuroTrauma Sciences (USA). CENTER-TBI also acknowledges interactions and support from the International Initiative for TBI Research (InTBIR) investigators. S.B. is funded by a Gates Cambridge Scholarship and a Paul & Daisy Soros Fellowship. E.B. is funded by the Medical Research Council (MR N013433-1) and by a Gates Cambridge Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to the patients and families of our study for making our efforts to improve TBI care possible. S.B. would like to thank Kathleen Mitchell-Fox (Princeton University) for offering comments on the manuscript.
Available on ORBi :
since 17 February 2025

Statistics


Number of views
5 (0 by ULiège)
Number of downloads
3 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi