Poster (Scientific congresses and symposiums)
Enhancing air quality monitoring : Random forests and low-cost sensors
Acerbis, Julie; Lenartz, Fabian; Spinelle, Laurent et al.
2024ITM2024 - International Technical Meeting On Air Pollution Modelling And Its Application
 

Files


Full Text
Enhancing low-cost air quality monitoring with random forest calibration.pdf
Author postprint (3.2 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
low-cost sensors; random forest; calibration; air quality; particulate matter; PM2.5; PM10
Disciplines :
Environmental sciences & ecology
Author, co-author :
Acerbis, Julie ;  Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Lenartz, Fabian;  ISSeP - Institut Scientifique de Service Public > Qualité de l'air
Spinelle, Laurent;  Ineris - Institut National de l'Environnement Industriel et des Risques > Qualité de l'air
Brostaux, Yves  ;  Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement
Language :
English
Title :
Enhancing air quality monitoring : Random forests and low-cost sensors
Publication date :
2024
Event name :
ITM2024 - International Technical Meeting On Air Pollution Modelling And Its Application
Event place :
Copenhagen, Denmark
Event date :
14/10/2024 - 18/10/2024
Audience :
International
Available on ORBi :
since 16 February 2025

Statistics


Number of views
11 (0 by ULiège)
Number of downloads
11 (0 by ULiège)

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi