Poster (Scientific congresses and symposiums)
Enhancing air quality monitoring : Random forests and low-cost sensors
Acerbis, Julie; Lenartz, Fabian; Spinelle, Laurent et al.
2024ITM2024 - International Technical Meeting On Air Pollution Modelling And Its Application
 

Files


Full Text
Enhancing low-cost air quality monitoring with random forest calibration.pdf
Author postprint (3.2 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
low-cost sensors; random forest; calibration; air quality; particulate matter; PM2.5; PM10
Disciplines :
Environmental sciences & ecology
Author, co-author :
Acerbis, Julie ;  Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Lenartz, Fabian;  ISSeP - Institut Scientifique de Service Public > Qualité de l'air
Spinelle, Laurent;  Ineris - Institut National de l'Environnement Industriel et des Risques > Qualité de l'air
Brostaux, Yves  ;  Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement
Language :
English
Title :
Enhancing air quality monitoring : Random forests and low-cost sensors
Publication date :
2024
Event name :
ITM2024 - International Technical Meeting On Air Pollution Modelling And Its Application
Event place :
Copenhagen, Denmark
Event date :
14/10/2024 - 18/10/2024
Audience :
International
Available on ORBi :
since 16 February 2025

Statistics


Number of views
6 (0 by ULiège)
Number of downloads
8 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi