Astrophysics - Earth and Planetary Astrophysics; Instrumentation and Methods for Astrophysics
Abstract :
[en] Asteroid discoveries are essential for planetary-defence efforts aiming to prevent impacts with Earth, including the more frequent megaton explosions from decametre impactors. Although large asteroids (≥100 kilometres) have remained in the main belt since their formation, small asteroids are commonly transported to the near-Earth object (NEO) population. However, owing to the lack of direct observational constraints, their size–frequency distribution (SFD)—which informs our understanding of the NEOs and the delivery of meteorite samples to Earth—varies substantially among models. Here we report 138 detections of some of the smallest asteroids (≳10 metres) ever observed in the main belt, which were enabled by JWST's infrared capabilities covering the emission peaks of the asteroids and synthetic tracking techniques. Despite small orbital arcs, we constrain the distances and phase angles of the objects using known asteroids as proxies, allowing us to derive sizes through radiometric techniques. Their SFD shows a break at about 100 metres (debiased cumulative slopes of q = ‑2.66 ± 0.60 and ‑0.97 ± 0.14 for diameters smaller and larger than roughly 100 metres, respectively), suggestive of a population driven by collisional cascade. These asteroids were sampled from several asteroid families—most probably Nysa, Polana and Massalia—according to the geometry of pointings considered here. Through further long-stare infrared observations, JWST is poised to serendipitously detect thousands of decametre-scale asteroids across the sky, examining individual asteroid families and the source regions of meteorites 'in situ'.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Burdanov, Artem ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Exoplanets in Transit: Identification and Characterization ; MIT, Department of Earth and Planetary Science
de Wit, Julien; MIT, Department of Earth and Planetary Science
Brož, Miroslav; Faculty of Mathematics and Physics, Astronomical Institute of Charles University, Prague, Czech Republic ,
Müller, Thomas G.; Max-Planck-Institute for Extraterrestrial Physics, Garching
Hoffmann, Tobias; Carl von Ossietzky University of Oldenburg, Germany
Ferrais, Marin ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > COMets METeors and Asteroids (COMETA) ; University of Central Florida
Micheli, Marco; ESA PDO NEO Coordination Centre, Frascati, Italy,
Jehin, Emmanuel ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Parrott, Daniel; Tycho Tracker, Parrott's Studio, LLC, Oklahoma City, OK, USA
Hasler, Samantha N.; MIT, Department of Earth and Planetary Science
Binzel, Richard P.; MIT, Department of Earth and Planetary Science
Ducrot, Elsa ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Exoplanets in Transit: Identification and Characterization ; CEA Saclay, Service d'Astrophysique
Kreidberg, Laura; Max-Planck-Institute for Astronomy, Heidelberg
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Greene, Thomas P.; NASA Ames Research Center
Grundy, Will M.; Lowell Observatory, Arizona
Kareta, Theodore; Lowell Observatory, Arizona
Lagage, Pierre-Olivier; CEA Saclay, Service d'Astrophysique
Moskovitz, Nicholas; Lowell Observatory, Arizona
Thirouin, Audrey; Lowell Observatory, Arizona
Thomas, Cristina A.; Northern Arizona University
Zieba, Sebastian; Max-Planck-Institute for Astronomy, Heidelberg, Leiden Observatory
A.F. Cheng et al. AIDA DART asteroid deflection test: planetary defense and science objectives Planet. Space Sci. 157 104 115 2018P&SS.157.104C 10.1016/j.pss.2018.02.015 1390.81649
P. Brown R.E. Spalding D.O. ReVelle E. Tagliaferri S.P. Worden The flux of small near-Earth objects colliding with the Earth Nature 420 294 296 2002Natur.420.294B 1:CAS:528:DC%2BD38XovVektLc%3D 12447433 10.1038/nature01238
C.F. Chyba P.J. Thomas K.J. Zahnle The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid Nature 361 40 44 1993Natur.361..40C 10.1038/361040a0
E.C.T. Chao E.M. Shoemaker B.M. Madsen First natural occurrence of coesite Science 132 220 222 1960Sci..132.220C 1:CAS:528:DyaF3cXht1KrtLY%3D 17748937 10.1126/science.132.3421.220 0248.55021
D. Stöffler N.A. Artemieva E. Pierazzo Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field Meteorit. Planet. Sci. 37 1893 1907 2002M&PS..37.1893S 10.1111/j.1945-5100.2002.tb01171.x
V. Reddy et al. Near-Earth asteroid 2012 TC4 observing campaign: results from a global planetary defense exercise Icarus 326 133 150 2019Icar.326.133R 10.1016/j.icarus.2019.02.018 1110.83327
W.F. Bottke et al. The fossilized size distribution of the main asteroid belt Icarus 175 111 140 2005Icar.175.111B 10.1016/j.icarus.2004.10.026
P. Farinella D. Vokrouhlický W.K. Hartmann Meteorite delivery via Yarkovsky orbital drift Icarus 132 378 387 1998Icar.132.378F 1:CAS:528:DyaK1cXjslaisbs%3D 10.1006/icar.1997.5872
S.R. Chesley et al. Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka Science 302 1739 1742 2003Sci..302.1739C 1:CAS:528:DC%2BD3sXpsVWgurc%3D 14657492 10.1126/science.1091452 1031.70009
P.G. Brown et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors Nature 503 238 241 2013Natur.503.238B 1:CAS:528:DC%2BC3sXhslOlsbjN 24196713 10.1038/nature12741 0970.03508
A.W. Harris P.W. Chodas The population of near-earth asteroids revisited and updated Icarus 365 114452 10.1016/j.icarus.2021.114452 07813023
D. Nesvorný et al. NEOMOD 2: an updated model of Near-Earth Objects from a decade of Catalina Sky Survey observations Icarus 411 115922 10.1016/j.icarus.2023.115922 1543.65225
M. Brož et al. Young asteroid families as the primary source of meteorites Nature 634 566 571 39415066 10.1038/s41586-024-08006-7 0217.24605
M. Marsset et al. The Massalia asteroid family as the origin of ordinary L chondrites Nature 634 561 565 1:CAS:528:DC%2BB2cXit1KlurzK 39415067 10.1038/s41586-024-08007-6
T.G. Müller et al. Asteroids seen by JWST-MIRI: radiometric size, distance, and orbit constraints Astron. Astrophys. 670 A53 10.1051/0004-6361/202245304 0868.57008
J. Tyson P. Guhathakurta G. Bernstein P. Hut Limits on the surface density of faint Kuiper Belt objects Bull. Am. Astron. Soc. 24 1127 1992BAAS..24Q1127T
M. Shao et al. Finding very small near-earth asteroids using synthetic tracking Astrophys. J. 782 1 2014ApJ..782..1S 10.1088/0004-637X/782/1/1 1406.74514
A.Y. Burdanov S.N. Hasler J. de Wit GPU-based framework for detecting small Solar System bodies in targeted exoplanet surveys Mon. Not. R. Astron. Soc. 521 4568 4578 2023MNRAS.521.4568B 10.1093/mnras/stad808 07750730
Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).
B. Gladman J.J. Kavelaars Kuiper Belt searches from the Palomar 5-m telescope Astron. Astrophys. 317 L35 L38 1997A&A..317L.35G 1078.83504
G.M. Bernstein et al. The size distribution of trans-Neptunian bodies Astron. J. 128 1364 1390 2004AJ..128.1364B 10.1086/422919 1060.90667
C. Zhai et al. Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique Astrophys. J. 792 60 2014ApJ..792..60Z 10.1088/0004-637X/792/1/60 1418.11136
A.N. Heinze S. Metchev J. Trollo Digital tracking observations can discover asteroids 10 times fainter than conventional searches Astron. J. 150 125 2015AJ..150.125H 10.1088/0004-6256/150/4/125
S.N. Hasler et al. Small body harvest with the Antarctic Search for Transiting Exoplanets (ASTEP) project Mon. Not. R. Astron. Soc. 526 3601 3609 2023MNRAS.526.3601H 10.1093/mnras/stad2943 07777565
E.F. Tedesco P.V. Noah M. Noah S.D. Price The Supplemental IRAS Minor Planet Survey Astron. J. 123 1056 1085 2002AJ..123.1056T 10.1086/338320 1040.92032
F. Usui et al. Asteroid catalog using Akari: AKARI/IRC mid-infrared asteroid survey Publ. Astron. Soc. Jpn 63 1117 1138 2011PASJ..63.1117U 10.1093/pasj/63.5.1117
A. Mainzer et al. Preliminary results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for Solar System science Astrophys. J. 731 53 2011ApJ..731..53M 10.1088/0004-637X/731/1/53 1402.62049
G.H. Rieke et al. The mid-infrared instrument for the James Webb Space Telescope, VII: the MIRI detectors Publ. Astron. Soc. Pac. 127 665 2015PASP.127.665R 10.1086/682257 21.0182.01
J.S. Dohnanyi Collisional model of asteroids and their debris J. Geophys. Res. 74 2531 2554 1969JGR..74.2531D 10.1029/JB074i010p02531 1165.74328
W. Benz E. Asphaug Catastrophic disruptions revisited Icarus 142 5 20 1999Icar.142..5B 10.1006/icar.1999.6204
M. Brož et al. Source regions of carbonaceous meteorites and near-Earth objects Astron. Astrophys. 689 A183 10.1051/0004-6361/202450532 0063.07257
B.J. Gladman et al. On the asteroid belt’s orbital and size distribution Icarus 202 104 118 2009Icar.202.104G 10.1016/j.icarus.2009.02.012
E.L. Ryan et al. The kilometer-sized Main Belt asteroid population revealed by Spitzer Astron. Astrophys. 578 A42 10.1051/0004-6361/201321375 1323.11010
N. Maeda et al. Size distributions of bluish and reddish small main-belt asteroids obtained by Subaru/Hyper Suprime-Cam Astron. J. 162 280 2021AJ..162.280M 10.3847/1538-3881/ac2c6e
P. García-Martín et al. Hubble Asteroid Hunter. III. Physical properties of newly found asteroids Astron. Astrophys. 683 A122 10.1051/0004-6361/202346771 65.1472.01
D. Vokrouhlický A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments Astron. Astrophys. 344 362 366 1999A&A..344.362V 0880.70017
D.P. Rubincam Radiative spin-up and spin-down of small asteroids Icarus 148 2 11 2000Icar.148..2R 10.1006/icar.2000.6485 1505.01013
M. Granvik et al. Super-catastrophic disruption of asteroids at small perihelion distances Nature 530 303 306 2016Natur.530.303G 1:CAS:528:DC%2BC28Xislylur8%3D 26887492 10.1038/nature16934
D. Nesvorný et al. NEOMOD: a new orbital distribution model for near-Earth objects Astron. J. 166 55 2023AJ..166..55N 10.3847/1538-3881/ace040 1448.70042
Redfield, S. et al. Report of the Working Group on Strategic Exoplanet Initiatives with HST and JWST. Preprint at https://arxiv.org/abs/2404.02932 (2024).
TRAPPIST-1 JWST Community Initiative A roadmap for the atmospheric characterization of terrestrial exoplanets with JWST Nat. Astron. 8 810 818 10.1038/s41550-024-02298-5
T.P. Greene et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST Nature 618 39 42 2023Natur.618..39G 1:CAS:528:DC%2BB3sXhtVyju7vN 36972683 10.1038/s41586-023-05951-7 0813.54030
S. Zieba et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c Nature 620 746 749 2023Natur.620.746Z 1:CAS:528:DC%2BB3sXht1GktbvE 37337068 10447244 10.1038/s41586-023-06232-z 1496.14009
P. Farinella D.R. Davis P. Paolicchi A. Cellino V. Zappala Asteroid collisional evolution—an integrated model for the evolution of asteroid rotation rates Astron. Astrophys. 253 604 614 1992A&A..253.604F
W.F. Bottke Jr F. William D. Vokrouhlický D.P. Rubincam D. Nesvorný The Yarkovsky and YORP effects: implications for asteroid dynamics Annu. Rev. Earth Planet. Sci. 34 157 191 2006AREPS.34.157B 1:CAS:528:DC%2BD28XlvFCntbg%3D 10.1146/annurev.earth.34.031405.125154 1448.70042
V. Carruba et al. The population of rotational fission clusters inside asteroid collisional families Nat. Astron. 4 83 88 2020NatAs..4..83C 10.1038/s41550-019-0887-8 1472.70033
D. Polishook Spin axes and shape models of asteroid pairs: fingerprints of YORP and a path to the density of rubble piles Icarus 241 79 96 2014Icar.241..79P 10.1016/j.icarus.2014.06.018
J.T. Dinsmore J. de Wit Constraining the interiors of asteroids through close encounters Mon. Not. R. Astron. Soc. 520 3459 3475 2023MNRAS.520.3459D 10.1093/mnras/stac2866 0009.23602
LSST Science Collaboration et al. LSST Science Book, Version 2.0. Preprint at https://arxiv.org/abs/0912.0201 (2009).
A.K. Mainzer et al. The Near-Earth Object Surveyor mission Planet. Sci. J. 4 224 10.3847/PSJ/ad0468 0951.00519
L.W. Alvarez W. Alvarez F. Asaro H.V. Michel Extraterrestrial cause for the Cretaceous-Tertiary extinction Science 208 1095 1108 1980Sci..208.1095A 1:CAS:528:DyaL3cXltFOksb4%3D 17783054 10.1126/science.208.4448.1095 0471.62008
N. Metropolis S. Ulam The Monte Carlo method J. Am. Stat. Assoc. 44 335 341 1:STN:280:DyaH1M%2FktV2htQ%3D%3D 18139350 10.1080/01621459.1949.10483310 0033.28807
Bradley, L. astropy/photutils: 1.8.0. Zenodo https://doi.org/10.5281/zenodo.7946442 (2023).
D. Parrott Tycho tracker: a new tool to facilitate the discovery and recovery of asteroids using synthetic tracking and modern GPU hardware J. JAAVSO 48 262 2020JAVSO.48.262P 0127.22002
M.E. Brown S.R. Kulkarni T.J. Liggett An analysis of the statistics of the Hubble Space Telescope Kuiper belt object search Astrophys. J. Lett. 490 L119 L122 1997ApJ..490L.119B 10.1086/311009 1085.81035
A.L. Cochran H.F. Levison P. Tamblyn S.A. Stern M.J. Duncan The calibration of the Hubble Space Telescope Kuiper belt object search: setting the record straight Astrophys. J. Lett. 503 L89 L93 1998ApJ..503L.89C 10.1086/311515
T. Hoffmann et al. Debiasing astro-photometric observations with corrections using statistics (DePhOCUS) Icarus 426 116366 10.1016/j.icarus.2024.116366
A.W. Harris A thermal model for near-Earth asteroids Icarus 131 291 301 1998Icar.131.291H 10.1006/icar.1997.5865 0972.20011
J.R. Masiero et al. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters Astrophys. J. 741 68 2011ApJ..741..68M 10.1088/0004-637X/741/2/68 1196.60124
V. Alí-Lagoa M. Delbo Sizes and albedos of Mars-crossing asteroids from WISE/NEOWISE data Astron. Astrophys. 603 A55 2017A&A..603A.55A 10.1051/0004-6361/201629917 1187.85023
V. Alí-Lagoa T.G. Müller F. Usui S. Hasegawa The AKARI IRC asteroid flux catalogue: updated diameters and albedos Astron. Astrophys. 612 A85 2018A&A..612A.85A 10.1051/0004-6361/201731806 1260.85145
S.D. Wolters S.F. Green N. McBride J.K. Davies Thermal infrared and optical observations of four near-Earth asteroids Icarus 193 535 552 2008Icar.193.535W 10.1016/j.icarus.2007.08.011 1196.16012
A. Mainzer et al. NEOWISE observations of near-Earth objects: preliminary results Astrophys. J. 743 156 2011ApJ..743.156M 10.1088/0004-637X/743/2/156 1402.62049
T. Grav et al. WISE/NEOWISE observations of the Hilda population: preliminary results Astrophys. J. 744 197 2012ApJ..744.197G 10.1088/0004-637X/744/2/197
E. Vilenius et al. “TNOs are Cool”: a survey of the trans-Neptunian region. VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects Astron. Astrophys. 541 A94 10.1051/0004-6361/201118743 1260.85080
P. Pravec A.W. Harris Fast and slow rotation of asteroids Icarus 148 12 20 2000Icar.148..12P 10.1006/icar.2000.6482 1547.37029
Lebofsky, L. A. & Spencer, J. R. in Asteroids II (eds Binzel, R. P. et al.) 128–147 (Univ. Arizona Press, 1989).
Harris, A. W. Lagerros, J. S. V. in Asteroids III (eds Bottke, W. F. Jr et al.) 205–218 (Univ. Arizona Press, 2002).
A. Mainzer et al. The population of tiny near-Earth objects observed by NEOWISE Astrophys. J. 784 110 2014ApJ..784.110M 10.1088/0004-637X/784/2/110 0951.00519
M. Fenucci B. Novaković D. Marčeta The low surface thermal inertia of the rapidly rotating near-Earth asteroid 2016 GE1 Astron. Astrophys. 675 A134 2023A&A..675A.134F 10.1051/0004-6361/202346160 1330.65159
F.E. DeMeo B. Carry Solar System evolution from compositional mapping of the asteroid belt Nature 505 629 634 2014Natur.505.629D 1:CAS:528:DC%2BC2cXhsFaqtr0%3D 24476886 10.1038/nature12908 1287.08005
A.Y. Burdanov et al. SPECULOOS Northern Observatory: searching for red worlds in the northern skies Publ. Astron. Soc. Pac. 134 105001 2022PASP.134j5001B 10.1088/1538-3873/ac92a6 1511.82024
L. Delrez et al. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs Proc. SPIE 10700 446 466
E. Jehin et al. Trappist: transiting planets and planetesimals small telescope Messenger 145 2 6 2011Msngr.145..2J
M. Mommert PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry Astron Comput. 18 47 53 2017A&C..18..47M 10.1016/j.ascom.2016.11.002
S.E. Levine et al. Status and performance of the Discovery Channel Telescope during commissioning Proc. SPIE 8444 430 444 0786.35075
C.R. Harris et al. Array programming with NumPy Nature 585 357 362 2020Natur.585.357H 1:CAS:528:DC%2BB3cXitlWmsbbN 32939066 7759461 10.1038/s41586-020-2649-2 1447.65145
Astropy Collaboration et al. Astropy: a community Python package for astronomy Astron. Astrophys. 558 A33 10.1051/0004-6361/201322068
Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package Astron. J. 156 123 2018AJ..156.123A 10.3847/1538-3881/aabc4f
P. Virtanen et al. SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods 17 261 272 1:CAS:528:DC%2BB3cXislCjuro%3D 32015543 7056644 10.1038/s41592-019-0686-2 0914.90135
The pandas development team. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.3509134 (2024).
McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (SciPy, 2010).
A. Ginsburg et al. astroquery: an astronomical web-querying package in Python Astron. J. 157 98 2019AJ..157..98G 10.3847/1538-3881/aafc33 66.1160.02
Christensen, E. J. et al. Status of the Catalina Sky Survey. In Proc. Asteroids, Comets, Meteors Conference 2587 (LPI Contributions, 2023).