PTX3; TLR4 signaling pathway; Triple negative breast cancer (TNBC); Hematology; Oncology; Cancer Research
Abstract :
[en] [en] BACKGROUND: The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC.
METHODS: The expression of PTX3 in BC tumor samples and in BC cell lines has been analyzed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO), qPCR, Western blot and ELISA assay. The contribution of tumor and stromal cells to PTX3 production in TNBC was assessed by analyzing single cell RNA sequencing data and RNAscope performed on TNBC tumor samples. In order to investigate the effects of PTX3 in TNBC, different cell lines were engineered to knock-down (MDA-MB-231 and BT549 cells) or overexpress (MDA-MB-468 and E0771 cells) PTX3. Finally, using these engineered cells, in vitro (including gene expression profiling and gene set enrichment analyses) and in vivo (orthotopic tumor models in immune-compromised and immune competent mice) analyses were performed to assess the role and the molecular mechanism(s) exerted by PTX3 in TNBC.
RESULTS: In silico and experimental data indicate that PTX3 is mainly produced by tumor cells in TNBC and that its expression levels correlate with tumor stage. Accordingly, gene expression and in vitro results demonstrate that PTX3 overexpression confers a high aggressive/proliferative phenotype and fosters stem-like features in TNBC cells. Also, PTX3 expression induces a more tumorigenic potential when TNBC cells are grafted orthotopically in vivo. Conversely, PTX3 downregulation results in a less aggressive behavior of TNBC cells. Mechanistically, our data reveal that PTX3 drives the activation of the pro-tumorigenic Toll-like receptor 4 (TLR4) signaling pathway in TNBC, demonstrating for the first time that the PTX3/TLR4 autocrine stimulation loop contributes to TNBC aggressiveness and that TLR4 inhibition significantly impacts the growth of PTX3-producing TNBC cells.
CONCLUSION: Altogether, these data shed light on the role of tumor-produced PTX3 in TNBC and uncover the importance of the PTX3/TLR4 axis for therapeutic and prognostic exploitation in TNBC.
Disciplines :
Oncology
Author, co-author :
Giacomini, Arianna; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. arianna.giacomini@unibs.it
Turati, Marta; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Grillo, Elisabetta; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Rezzola, Sara; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Ghedini, Gaia Cristina; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Schuind, Ander Churruca; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Foglio, Eleonora; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Maccarinelli, Federica; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Faletti, Jessica; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Filiberti, Serena; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Chambery, Angela; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
Valletta, Mariangela; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
Melocchi, Laura; Pathology Unit, Fondazione Poliambulanza Hospital Institute, Brescia, 25121, Italy
Gofflot, Stéphanie ; Université de Liège - ULiège > Département des sciences de la santé publique
Chiavarina, Barbara; Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
Turtoi, Andrei ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > GIGA-R : Labo de recherche sur les métastases ; Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
Presta, Marco; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Ronca, Roberto; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. roberto.ronca@unibs.it
AIRC - Associazione Italiana per la Ricerca sul Cancro
Funding text :
We thank Dr. B. Bottazzi and Dr. S. Valentino (Humanitas Clinical Institute, Rozzano, Italy) for PTX3 quantification by ELISA, Prof. S. Calza (University of Brescia) for CSR score analysis, and Dr. A. Cattaneo and N. Cattane (IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy) for their support in GEP analyses.R.R. was supported by Associazione Italiana Ricerca sul Cancro (AIRC IG 2019 – ID.23151), M.P. was supported by Associazione Italiana Ricerca sul Cancro (AIRC IG 2019 – ID. 18493); E.G., S.R. and F.M. were supported by Fondazione Umberto Veronesi fellowships.
Viale G. (2012) The current state of breast cancer classification. Annals of oncology: official journal of the European Society for Medical Oncology 23 suppl 10:x207–210. https://doi.org/10.1093/annonc/mds326.
Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC. Race, breast cancer subtypes, and survival in the Carolina breast Cancer Study. JAMA. 2006;295(21):2492–502. 10.1001/jama.295.21.2492. DOI: 10.1001/jama.295.21.2492
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ. Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast Cancer 2011. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2011;22(8):1736–47. 10.1093/annonc/mdr304. DOI: 10.1093/annonc/mdr304
Al-Thoubaity FK. Molecular classification of breast cancer: a retrospective cohort study. Ann Med Surg (Lond). 2020;49:44–8. 10.1016/j.amsu.2019.11.021. DOI: 10.1016/j.amsu.2019.11.021
Zhao S, Zuo WJ, Shao ZM, Jiang YZ. Molecular subtypes and precision treatment of triple-negative breast cancer. Annals of Translational Medicine. 2020;8(7):499. 10.21037/atm.2020.03.194. DOI: 10.21037/atm.2020.03.194
Ronca R, Alessi P, Coltrini D, Di Salle E, Giacomini A, Leali D, Corsini M, Belleri M, Tobia C, Garlanda C, Bonomi E, Tardanico R, Vermi W, Presta M. Long pentraxin-3 as an epithelial-stromal fibroblast growth factor-targeting inhibitor in prostate cancer. J Pathol. 2013;230(2):228–38. 10.1002/path.4181. DOI: 10.1002/path.4181
Ronca R, Benzoni P, Leali D, Urbinati C, Belleri M, Corsini M, Alessi P, Coltrini D, Calza S, Presta M, Dell’Era P. Antiangiogenic activity of a neutralizing human single-chain antibody fragment against fibroblast growth factor receptor 1. Mol Cancer Ther. 2010;9(12):3244–53. 10.1158/1535-7163.MCT-10-0417. DOI: 10.1158/1535-7163.MCT-10-0417
Rodrigues PF, Matarazzo S, Maccarinelli F, Foglio E, Giacomini A, Silva Nunes JP, Presta M, Dias AAM, Ronca R. Long pentraxin 3-Mediated fibroblast growth factor trapping impairs Fibrosarcoma Growth. Front Oncol. 2018;8:472. 10.3389/fonc.2018.00472. DOI: 10.3389/fonc.2018.00472
Giacomini A, Ghedini GC, Presta M, Ronca R. Long pentraxin 3: a novel multifaceted player in cancer. Biochim Biophys Acta. 2018;1869(1):53–63. 10.1016/j.bbcan.2017.11.004. DOI: 10.1016/j.bbcan.2017.11.004
Bonavita E, Gentile S, Rubino M, Maina V, Papait R, Kunderfranco P, Greco C, Feruglio F, Molgora M, Laface I, Tartari S, Doni A, Pasqualini F, Barbati E, Basso G, Galdiero MR, Nebuloni M, Roncalli M, Colombo P, Laghi L, Lambris JD, Jaillon S, Garlanda C, Mantovani A. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell. 2015;160(4):700–14. 10.1016/j.cell.2015.01.004. DOI: 10.1016/j.cell.2015.01.004
Presta M, Foglio E, Churruca Schuind A, Ronca R. Long Pentraxin-3 modulates the angiogenic activity of Fibroblast Growth Factor-2. Front Immunol. 2018;9:2327. 10.3389/fimmu.2018.02327. DOI: 10.3389/fimmu.2018.02327
Ronca R, Di Salle E, Giacomini A, Leali D, Alessi P, Coltrini D, Ravelli C, Matarazzo S, Ribatti D, Vermi W, Presta M. (2013) Long Pentraxin-3 inhibits epithelial-mesenchymal transition in Melanoma cells. Molecular cancer therapeutics. 10.1158/1535-7163.MCT-13-0487.
Matarazzo S, Melocchi L, Rezzola S, Grillo E, Maccarinelli F, Giacomini A, Turati M, Taranto S, Zammataro L, Cerasuolo M, Bugatti M, Vermi W, Presta M, Ronca R. Long Pentraxin-3 follows and modulates bladder Cancer Progression. Cancers. 2019;11(9). 10.3390/cancers11091277.
Willeke F, Assad A, Findeisen P, Schromm E, Grobholz R, von Gerstenbergk B, Mantovani A, Peri S, Friess HH, Post S, von Knebel Doeberitz M, Schwarzbach MH. Overexpression of a member of the pentraxin family (PTX3) in human soft tissue liposarcoma. Eur J Cancer. 2006;42(15):2639–46. 10.1016/j.ejca.2006.05.035. DOI: 10.1016/j.ejca.2006.05.035
Choi B, Lee EJ, Park YS, Kim SM, Kim EY, Song Y, Kang SW, Rhu MH, Chang EJ. Pentraxin-3 silencing suppresses gastric Cancer-related inflammation by inhibiting Chemotactic Migration of Macrophages. Anticancer Res. 2015;35(5):2663–8.
Kondo S, Ueno H, Hosoi H, Hashimoto J, Morizane C, Koizumi F, Tamura K, Okusaka T. Clinical impact of pentraxin family expression on prognosis of pancreatic carcinoma. Br J Cancer. 2013;109(3):739–46. 10.1038/bjc.2013.348. DOI: 10.1038/bjc.2013.348
Ying TH, Lee CH, Chiou HL, Yang SF, Lin CL, Hung CH, Tsai JP, Hsieh YH. Knockdown of Pentraxin 3 suppresses tumorigenicity and metastasis of human cervical cancer cells. Sci Rep. 2016;6:29385. 10.1038/srep29385. DOI: 10.1038/srep29385
Locatelli M, Ferrero S, Martinelli Boneschi F, Boiocchi L, Zavanone M, Maria Gaini S, Bello L, Valentino S, Barbati E, Nebuloni M, Mantovani A, Garlanda C. The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J Neuroimmunol. 2013;260(1–2):99–106. 10.1016/j.jneuroim.2013.04.009. DOI: 10.1016/j.jneuroim.2013.04.009
Scimeca M, Antonacci C, Colombo D, Bonfiglio R, Buonomo OC, Bonanno E. Emerging prognostic markers related to mesenchymal characteristics of poorly differentiated breast cancers. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37(4):5427–35. 10.1007/s13277-015-4361-7. DOI: 10.1007/s13277-015-4361-7
Choi B, Lee EJ, Song DH, Yoon SC, Chung YH, Jang Y, Kim SM, Song Y, Kang SW, Yoon SY, Chang EJ. Elevated pentraxin 3 in bone metastatic breast cancer is correlated with osteolytic function. Oncotarget. 2014;5(2):481–92. 10.18632/oncotarget.1664. DOI: 10.18632/oncotarget.1664
Thomas C, Henry W, Cuiffo BG, Collmann AY, Marangoni E, Benhamo V, Bhasin MK, Fan C, Fuhrmann L, Baldwin AS, Perou C, Vincent-Salomon A, Toker A, Karnoub AE. Pentraxin-3 is a PI3K signaling target that promotes stem cell-like traits in basal-like breast cancers. Sci Signal. 2017;10(467). 10.1126/scisignal.aah4674.
Zhang P, Liu Y, Lian C, Cao X, Wang Y, Li X, Cong M, Tian P, Zhang X, Wei G, Liu T, Hu G. SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat Commun. 2020;11(1):2487. 10.1038/s41467-020-16051-9. DOI: 10.1038/s41467-020-16051-9
Ahmed A, Redmond HP, Wang JH. Links between toll-like receptor 4 and breast cancer. Oncoimmunology. 2013;2(2):e22945. 10.4161/onci.22945. DOI: 10.4161/onci.22945
Wu K, Zhang H, Fu Y, Zhu Y, Kong L, Chen L, Zhao F, Yu L, Chen X. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep. 2018;18(3):3411–20. 10.3892/mmr.2018.9326. DOI: 10.3892/mmr.2018.9326
Casey AE, Laster WR Jr, Ross GL. Sustained enhanced growth of carcinoma EO771 in C57 black mice. Proc Soc Exp Biol Med. 1951;77(2):358–62. 10.3181/00379727-77-18779. DOI: 10.3181/00379727-77-18779
Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, Kumar T, Hu M, Sei E, Davis A, Wang F, Shaitelman SF, Wang JR, Chen K, Moulder S, Lai SY, Navin NE. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol. 2021;39(5):599–608. 10.1038/s41587-020-00795-2. DOI: 10.1038/s41587-020-00795-2
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of single-cell data. Cell. 2019;177(7):1888–1902e1821. 10.1016/j.cell.2019.05.031.
Colucci-D’Amato L, Cicatiello AE, Reccia MG, Volpicelli F, Severino V, Russo R, Sandomenico A, Doti N, D’Esposito V, Formisano P, Chambery A. A targeted secretome profiling by multiplexed immunoassay revealed that secreted chemokine ligand 2 (MCP-1/CCL2) affects neural differentiation in mesencephalic neural progenitor cells. Proteomics. 2015;15(4):714–24. 10.1002/pmic.201400360. DOI: 10.1002/pmic.201400360
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27. 10.1016/j.ccr.2006.10.008. DOI: 10.1016/j.ccr.2006.10.008
Ringner M, Fredlund E, Hakkinen J, Borg A, Staaf J. GOBO: gene expression-based outcome for breast cancer online. PLoS ONE. 2011;6(3):e17911. 10.1371/journal.pone.0017911. DOI: 10.1371/journal.pone.0017911
Jastrzebski K, Thijssen B, Kluin RJC, de Lint K, Majewski IJ, Beijersbergen RL, Wessels LFA. Integrative modeling identifies key determinants of inhibitor sensitivity in breast Cancer cell lines. Cancer Res. 2018;78(15):4396–410. 10.1158/0008-5472.CAN-17-2698. DOI: 10.1158/0008-5472.CAN-17-2698
Shats I, Gatza ML, Chang JT, Mori S, Wang J, Rich J, Nevins JR. Using a stem cell-based signature to guide therapeutic selection in cancer. Cancer Res. 2011;71(5):1772–80. 10.1158/0008-5472.CAN-10-1735. DOI: 10.1158/0008-5472.CAN-10-1735
Chen B, Ye P, Chen Y, Liu T, Cha JH, Yan X, Yang WH. Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: elucidating Molecular Mechanisms and clinical significance. Front Oncol. 2020;10:1657. 10.3389/fonc.2020.01657. DOI: 10.3389/fonc.2020.01657
Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res Treat. 2020. 10.1007/s10549-020-05954-2. DOI: 10.1007/s10549-020-05954-2
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases. 2018;5(2):77–106. 10.1016/j.gendis.2018.05.001. DOI: 10.1016/j.gendis.2018.05.001
Burstein HJ. Systemic therapy for Estrogen Receptor-Positive, HER2-Negative breast Cancer. N Engl J Med. 2020;383(26):2557–70. 10.1056/NEJMra1307118. DOI: 10.1056/NEJMra1307118
Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discovery Today. 2020. 10.1016/j.drudis.2020.12.014. DOI: 10.1016/j.drudis.2020.12.014
Higgins MJ, Baselga J. Targeted therapies for breast cancer. J Clin Investig. 2011;121(10):3797–803. 10.1172/JCI57152. DOI: 10.1172/JCI57152
da Silva JL, Cardoso Nunes NC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: a thorough review of biomarkers. Crit Rev Oncol/Hematol. 2020;145:102855. 10.1016/j.critrevonc.2019.102855. DOI: 10.1016/j.critrevonc.2019.102855
Medina MA, Oza G, Sharma A, Arriaga LG, Hernandez Hernandez JM, Rotello VM, Ramirez JT. Triple-negative breast Cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17(6). 10.3390/ijerph17062078.
Borri F, Granaglia A. Pathology of triple negative breast cancer. Sem Cancer Biol. 2020. 10.1016/j.semcancer.2020.06.005. DOI: 10.1016/j.semcancer.2020.06.005
Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast cancer. 2020;6:54. 10.1038/s41523-020-00197-2. DOI: 10.1038/s41523-020-00197-2
Doni A, Stravalaci M, Inforzato A, Magrini E, Mantovani A, Garlanda C, Bottazzi B. The long Pentraxin PTX3 as a Link between Innate Immunity, tissue remodeling, and Cancer. Front Immunol. 2019;10:712. 10.3389/fimmu.2019.00712. DOI: 10.3389/fimmu.2019.00712
Giacomini A, Ghedini GC, Presta M, Ronca R. Long pentraxin 3: a novel multifaceted player in cancer. Biochim et Biophys acta Reviews cancer. 2018;1869(1):53–63. 10.1016/j.bbcan.2017.11.004. DOI: 10.1016/j.bbcan.2017.11.004
Bozza S, Campo S, Arseni B, Inforzato A, Ragnar L, Bottazzi B, Mantovani A, Moretti S, Oikonomous V, De Santis R, Carvalho A, Salvatori G, Romani L. PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J Immunol. 2014;193(5):2340–8. 10.4049/jimmunol.1400814. DOI: 10.4049/jimmunol.1400814
Rathore M, Girard C, Ohanna M, Tichet M, Ben Jouira R, Garcia E, Larbret F, Gesson M, Audebert S, Lacour JP, Montaudie H, Prod’Homme V, Tartare-Deckert S, Deckert M. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-kappaB signaling pathway. Oncogene. 2019;38(30):5873–89. 10.1038/s41388-019-0848-9. DOI: 10.1038/s41388-019-0848-9
Yang H, Zhou H, Feng P, Zhou X, Wen H, Xie X, Shen H, Zhu X. Reduced expression of toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J Experimental Clin cancer Research: CR. 2010;29:92. 10.1186/1756-9966-29-92. DOI: 10.1186/1756-9966-29-92
Long F, Lin H, Zhang X, Zhang J, Xiao H, Wang T. Atractylenolide-I suppresses tumorigenesis of breast Cancer by inhibiting toll-like receptor 4-Mediated Nuclear factor-kappab signaling pathway. Front Pharmacol. 2020;11:598939. 10.3389/fphar.2020.598939. DOI: 10.3389/fphar.2020.598939
Wee ZN, Yatim SM, Kohlbauer VK, Feng M, Goh JY, Bao Y, Lee PL, Zhang S, Wang PP, Lim E, Tam WL, Cai Y, Ditzel HJ, Hoon DS, Tan EY, Yu Q. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel. Nat Commun. 2015;6:8746. 10.1038/ncomms9746. DOI: 10.1038/ncomms9746
Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB, Brown PH. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 2013;73(11):3470–80. 10.1158/0008-5472.CAN-12-4524-T. DOI: 10.1158/0008-5472.CAN-12-4524-T
Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J. NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun. 2013;4:2299. 10.1038/ncomms3299. DOI: 10.1038/ncomms3299
Gao W, Xiong Y, Li Q, Yang H. Inhibition of toll-like receptor signaling as a Promising Therapy for Inflammatory Diseases: a journey from Molecular to Nano therapeutics. Front Physiol. 2017;8:508. 10.3389/fphys.2017.00508. DOI: 10.3389/fphys.2017.00508
Ramadass V, Vaiyapuri T, Tergaonkar V. Small molecule NF-kappaB pathway inhibitors in clinic. Int J Mol Sci. 2020;21(14). https://doi.org/10.3390/ijms21145164.