[en] Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality. We conducted 39 field experiments on the Tibetan Plateau, comparing short-term (≤5 years), 5-10 years and long-term (≥10 years) continuous cropping with rotation of Tibetan barley with wheat or rape. Results showed that Tibetan barley-wheat and Tibetan barley-rape rotations increased yields by 17% and 12%, respectively, while improving the soil quality index by 11% and 21%, compared with long-term continuous cropping. Both Tibetan barley rotations with wheat and rape improved soil quality and consequently yield, mainly by increasing soil microbial biomass nitrogen and microbial biomass carbon and decreasing pH. By contrast, long-term continuous cropping led to decreased soil organic matter, lower microbial biomass nitrogen and increased pH, contributing to yield decline. The benefits of rotations on crop yield and soil quality increased over time. Implementing crop rotation with wheat or rape thus offers a sustainable agricultural strategy for improving food security on the Tibetan Plateau.
Disciplines :
Agriculture & agronomy
Author, co-author :
Wu, Hui ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China ; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, CAU/CAAS, Beijing, China ; Tibetan Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
Liu, Enke ; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China. liuenke@caas.cn ; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, CAU/CAAS, Beijing, China. liuenke@caas.cn ; Tibetan Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China. liuenke@caas.cn ; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China. liuenke@caas.cn
Jin, Tao ; Tibetan Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China. jt6637@163.com ; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China. jt6637@163.com
Liu, Buchun; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China ; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, CAU/CAAS, Beijing, China
Gopalakrishnan, Subramaniam; International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
Zhou, Jie; College of Agriculture, Nanjing Agricultural University, Nanjing, China
Shao, Guodong; Geo-Biosphere Interactions, Department of Geosciences, University of Tübingen, Tübingen, Germany
Mei, Xurong ; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China. meixurong@caas.cn ; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, CAU/CAAS, Beijing, China. meixurong@caas.cn
Delaplace, Pierre ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
De Clerck, Caroline ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Language :
English
Title :
Crop rotation increases Tibetan barley yield and soil quality on the Tibetan Plateau.
C. Yu et al. Ecological and environmental issues faced by a developing Tibet Environ. Sci. Technol. 46 1979 1980 2012EnST..46.1979Y 1:CAS:528:DC%2BC38XhslGitrc%3D 22304386 1084.91047 10.1021/es2047188
L. Yang et al. Integrated assessments of land degradation on the Qinghai-Tibet plateau Ecol. Indic. 147 109945 1526.53012 10.1016/j.ecolind.2023.109945
Huang, M., Degen, A. & Shang, Z. in Sustainable Ecological Restoration and Conservation in the Hindu Kush Himalayan Region: A Comprehensive Review 101–116 (CABI, 2024).
A. Conacher Land degradation: a global perspective NZ Geogr. 65 91 94 1304.11097 10.1111/j.1745-7939.2009.01151.x
I. Stavi R. Lal Achieving zero net land degradation: challenges and opportunities J. Arid. Environ. 112 44 51 2015JArEn.112..44S 0273.02041 10.1016/j.jaridenv.2014.01.016
Z. Ma et al. Obstacles in continuous cropping: mechanisms and control measures Adv. Agron. 179 205 256 0767.76009 10.1016/bs.agron.2023.01.004
V. Rubio A. Quincke O. Ernst Deep tillage and nitrogen do not remediate cumulative soil deterioration effects of continuous cropping Agron. J. 113 5584 5596 1:CAS:528:DC%2BB38Xls1Kjsrs%3D 1536.93193 10.1002/agj2.20927
Q. Yang et al. Alleviating soil degradation caused by green bean continuous cropping: application of combined amendments Soil Res. 61 484 494 1:CAS:528:DC%2BB3sXhtlCgsbnP 1525.62238 10.1071/SR22205
J.L. Jensen I.K. Thomsen J. Eriksen B.T. Christensen Spring barley grown for decades with straw incorporation and cover crops: effects on crop yields and N uptake Field Crop Res. 270 108228 1482.46073 10.1016/j.fcr.2021.108228
Y. Yao et al. Rhizosphere bacterial community response to continuous cropping of Tibetan barley Front. Microbiol. 11 551444 33329420 7734106 10.3389/fmicb.2020.551444
Y. Yao et al. Impacts of continuous cropping on fungal communities in the rhizosphere soil of Tibetan barley Front. Microbiol. 13 755720 35185842 8854972 10.3389/fmicb.2022.755720
F.J. Bianchi C.J.H. Booij T. Tscharntke Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control Proc. R. Soc. B 273 1715 1727 1:STN:280:DC%2BD28znsF2nug%3D%3D 16790403 1634792 10.1098/rspb.2006.3530
R.W. Brooker et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology New Phytol. 206 107 117 25866856 1172.78303 10.1111/nph.13132
B.B. Lin Resilience in agriculture through crop diversification: adaptive management for environmental change BioScience 61 183 193 1299.05186 10.1525/bio.2011.61.3.4
T.M. Bowles A. Jilling K. Moran-Rivera J. Schnecker A.S. Grandy Crop rotational complexity affects plant-soil nitrogen cycling during water deficit Soil Biol. Biochem. 166 108552 1:CAS:528:DC%2BB38XhsFGis7k%3D 10.1016/j.soilbio.2022.108552
M. Jalli et al. Effects of crop rotation on spring wheat yield and pest occurrence in different tillage systems: a multi-year experiment in Finnish growing conditions Front. Sustain. Food Syst. 5 647335 10.3389/fsufs.2021.647335
M.K. Bhatt et al. Use of inorganic fertilizers and FYM for twenty-nine years in rice-wheat cropping system improves physical soil quality indices after rice Int. J. Curr. Microbiol. Appl. Sci. 6 3431 3438 3646265 1394.74127 10.20546/ijcmas.2017.609.421
I. Martin-Rueda et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf Soil Till. Res. 92 1 9 07898462 10.1016/j.still.2005.10.006
Y. Kuzyakov et al. New approaches for evaluation of soil health, sensitivity and resistance to degradation Front. Agr. Sci. Eng. 7 282 288 1492.00011 10.15302/J-FASE-2020338
P. Manning et al. Redefining ecosystem multifunctionality Nat. Ecol. Evol. 2 427 436 29453352 10.1038/s41559-017-0461-7
J. Guo et al. The molecular mechanism of yellow mushroom (Floccularia luteovirens) response to strong ultraviolet radiation on the Qinghai-Tibet plateau Front. Microbiol. 13 918491 35794915 9251379 10.3389/fmicb.2022.918491
S. Zhang et al. Ammonia oxidizers in river sediments of the Qinghai-Tibet Plateau and their adaptations to high-elevation conditions Water Res. 173 115589 1:CAS:528:DC%2BB3cXjvFKnt7k%3D 32058148 1507.74133 10.1016/j.watres.2020.115589
L. Hu et al. Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator Nat. Commun. 13 2022NatCo.13.6413H 1:CAS:528:DC%2BB38XivVWru73P 36302769 9613686 1541.93103 10.1038/s41467-022-34138-3 6413
L. Wang K. Seki T. Miyazaki Y. Ishihama The causes of soil alkalinization in the Songnen Plain of Northeast China Paddy Water Environ. 7 259 270 1213.74100 10.1007/s10333-009-0166-x
K.T.G.K. Perera T.K. Weerasinghe A study on the impacts of corn cultivation (Zea mays (L.) Family–Poaceae) on the properties of soil Int. J. Sci. Res. Publ. 4 1 6 1001.93090
C. Wang Y. Kuzyakov Soil organic matter priming: the pH effects Glob. Chang. Biol. 30 1:CAS:528:DC%2BB2cXht1anurfJ 38822665 10.1111/gcb.17349 e17349
G. Sun et al. Organic matter biomarker and 13C NMR characteristics of soil and sediment standard reference materials from China Sci. Total Environ. 836 155661 1:CAS:528:DC%2BB38Xht1Krs7%2FO 35525351 10.1016/j.scitotenv.2022.155661
A. Gunina Y. Kuzyakov From energy to (soil organic) matter Glob. Chang. Biol. 28 2169 2182 1:CAS:528:DC%2BB38XhvFehsrnP 34978126 1497.94036 10.1111/gcb.16071
E.D. Whalen et al. Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding Glob. Chang. Biol. 28 7167 7185 1:CAS:528:DC%2BB38XisVars7vM 36043234 1505.34065 10.1111/gcb.16413
R. Cen et al. Effect mechanism of biochar application on soil structure and organic matter in semi-arid areas J. Environ. Manag. 286 112198 1:CAS:528:DC%2BB3MXltFamsb8%3D 1512.53044 10.1016/j.jenvman.2021.112198
G. Ondrasek et al. Biogeochemistry of soil organic matter in agroecosystems & environmental implications Sci. Total Environ. 658 1559 1573 2019ScTEn.658.1559O 1:CAS:528:DC%2BC1MXivFymsA%3D%3D 30678014 1407.35221 10.1016/j.scitotenv.2018.12.243
R. Lal Soil organic matter content and crop yield J. Soil Water Conserv. 75 27A 32A 1538.30012 10.2489/jswc.75.2.27A
H. He M. Peng W. Lu Z. Hou J. Li Commercial organic fertilizer substitution increases wheat yield by improving soil quality Sci. Total Environ. 851 158132 1:CAS:528:DC%2BB38XitlWit7jJ 36007638 10.1016/j.scitotenv.2022.158132
X. Zhong et al. New insights into the sustainable use of soluble straw humic substances for the remediation of multiple heavy metals in contaminated soil Sci. Total Environ. 903 166274 1:CAS:528:DC%2BB3sXhslantL%2FP 37582446 10.1016/j.scitotenv.2023.166274
H. Chen et al. Carbon and nitrogen cycling on the Qinghai–Tibetan plateau Nat. Rev. Earth Environ. 3 701 716 2022NRvEE..3.701C 1:CAS:528:DC%2BB38XisFKht7jP 1180.53018 10.1038/s43017-022-00344-2
D. Wu et al. Molecular linkages between chemodiversity and MCPA complexation behavior of dissolved organic matter in paddy soil: effects of land conversion Environ. Pollut. 311 119949 1:CAS:528:DC%2BB38XitFKgtLzE 35970345 10.1016/j.envpol.2022.119949
J. Feng Y. Song B. Zhu Ecosystem-dependent responses of soil carbon storage to phosphorus enrichment New Phytol. 238 2363 2374 1:CAS:528:DC%2BB3sXotFGktL8%3D 36960561 1499.65299 10.1111/nph.18907
J. Prommer et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity Glob. Chang. Biol. 26 669 681 2020GCBio.26.669P 31344298 10.1111/gcb.14777
G.V. Subbarao T.D. Searchinger A “more ammonium solution” to mitigate nitrogen pollution and boost crop yields Proc. Natl Acad. Sci. USA 118 1:CAS:528:DC%2BB3MXht1eht7fE 34039714 8179215 10.1073/pnas.2107576118 e2107576118
X.Z. Zhang Z.X. Shen G. Fu A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau Appl. Soil Ecol. 87 32 38 0474.45008 10.1016/j.apsoil.2014.11.012
T. Liu L. Guo C. Cao W. Tan C. Li Long-term rice-oilseed rape rotation increases soil organic carbon by improving functional groups of soil organic matter Agric. Ecosyst. Environ. 319 107548 1:CAS:528:DC%2BB3MXhtlKrtL3J
M.J. Grinsted M.J. Hedley R.E. White P.H. Nye Plant-induced changes in the rhizosphere of rape (Brassica napus var. emerald) seedlings: I. pH change and the increase in P concentration in the soil solution New Phytol. 91 19 29 1:CAS:528:DyaL38XktVGhtr4%3D 10.1111/j.1469-8137.1982.tb03289.x
B.S. Brar K. Singh G.S. Dheri Carbon sequestration and soil carbon pools in a rice–wheat cropping system: effect of long-term use of inorganic fertilizers and organic manure Soil Tillage Res. 128 30 36 10.1016/j.still.2012.10.001
J.L. Havlin D.E. Kissel L.D. Maddux M.M. Claassen J.H. Long Crop rotation and tillage effects on soil organic carbon and nitrogen Soil Sci. Soc. Am. J. 54 448 452 1990SSASJ.54.448H 10.2136/sssaj1990.03615995005400020026x
L. Carpenter-Boggs J.L. Pikul M.F. Vigil W.E. Riedell Soil nitrogen mineralization influenced by crop rotation and nitrogen fertilization Soil Sci. Soc. Am. J. 64 2038 2045 2000SSASJ.64.2038C 1:CAS:528:DC%2BD3MXhsFSlug%3D%3D 10.2136/sssaj2000.6462038x
U. Perkons et al. Root-length densities of various annual crops following crops with contrasting root systems Soil Till. Res. 137 50 57 10.1016/j.still.2013.11.005
A. Walkley I.A. Black An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method Soil Sci. 37 29 38 1934SoilS.37..29W 1:CAS:528:DyaA2cXitlGmug%3D%3D 0924.12003 10.1097/00010694-193401000-00003
P. Sáez-Plaza T. Michałowski M.J. Navas A.G. Asuero S. Wybraniec An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish Crit. Rev. Anal. Chem. 43 178 223 10.1080/10408347.2012.751786
S. McLeod Determination of total soil and plant nitrogen using a micro-distillation unit in a continuous flow analyzer Anal. Chim. Acta 266 113 117 1:CAS:528:DyaK38XlvVeqsL4%3D 0762.34009 10.1016/0003-2670(92)85285-E
J.B. Rodriguez J.R. Self P.N. Soltanpour Optimal conditions for phosphorus analysis by the ascorbic acid‐molybdenum blue method Soil Sci. Soc. Am. J. 58 866 870 1994SSASJ.58.866R 1:CAS:528:DyaK2cXlsFKnsLw%3D 10.2136/sssaj1994.03615995005800030034x
Pratt, P. F. in Methods of Soil Analysis Part 2: Chemical andMicrobiological Properties (ed. Norman, A. G.) 1022–1030 (American Society of Agronomy, 1965).
Thomas, G. W. in Methods of Soil Analysis: Part 3 Chemical Methods (eds Sparks, D. L. et al.) 475–490 (American Society of Agronomy, 1996).
Q. Zhang et al. Total soil organic carbon increases but becomes more labile after afforestation in China’s Loess Plateau For. Ecol. Manag. 461 117911 10.1016/j.foreco.2020.117911
De Mendiburu, F. & Simon, R. Agricolae - ten years of an open source statistical tool for experiments in breeding, agriculture and biology. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.1404v1 (2015).
D. Lüdecke et al. see: an R package for visualizing statistical models J. Open Source Softw. 6 3393 2021JOSS..6.3393L 1472.62136 10.21105/joss.03393