[en] Abstract This study presents the ozone monitoring instrument (OMI) Collection 4 formaldehyde (HCHO) retrieval developed with the Smithsonian Astrophysical Observatory's (SAO) Making Earth System Data Records for Use in Research Environments (MEaSUREs) algorithm. The retrieval algorithm updates and makes improvements to the NASA operational OMI HCHO (OMI Collection 3 HCHO) algorithm, and has been transitioned to use OMI Collection 4 Level‐1B radiances. This paper describes the updated retrieval algorithm and compares Collection 3 and Collection 4 data products. The OMI Collection 4 HCHO exhibits remarkably improved stability over time in comparison to the OMI Collection 3 HCHO product, with better precision and the elimination of artificial trends present in the Collection 3 during the later years of the mission. We validate the OMI Collection 4 HCHO data product using Fourier‐Transform Infrared (FTIR) ground‐based HCHO measurements. The climatological monthly averaged OMI Collection 4 HCHO vertical column densities (VCDs) agree well with the FTIR VCDs, with a correlation coefficient of 0.83, root‐mean‐square error (RMSE) of molecules , regression slope of 0.79, and intercept of molecules . Additionally, we compare the monthly averaged OMI Collection 4 HCHO VCDs to OMPS Suomi NPP, OMPS NOAA‐20, and TROPOMI HCHO VCDs in overlapping years for 12 geographic regions. This comparison demonstrates high correlation coefficients of 0.98 (OMPS Suomi NPP), 0.97 (OMPS NOAA‐20), and 0.90 (TROPOMI).
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ayazpour, Zolal ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA ; Department of Civil, Structural and Environmental Engineering University at Buffalo Buffalo NY USA
González Abad, Gonzalo ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA
Nowlan, Caroline R. ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA
Sun, Kang ; Department of Civil, Structural and Environmental Engineering University at Buffalo Buffalo NY USA ; Research and Education in Energy Environment and Water Institute University at Buffalo Buffalo NY USA
Kwon, Hyeong‐Ahn ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA ; Now at University of Suwon Hwaseong South Korea
Chan Miller, Christopher; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA ; Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA USA ; Environmental Defense Fund New York NY USA ; Climate Change Research Centre University of New South Wales Kensington NSW Australia
Chong, Heesung; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA
Wang, Huiqun ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA
Liu, Xiong ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA
Chance, Kelly ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA
O’Sullivan, Ewan ; Center for Astrophysics|Harvard & Smithsonian Cambridge MA USA
Zhu, Lei ; School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China
Vigouroux, Corinne ; Royal Belgian Institute for Space Aeronomy (BIRA‐IASB) Brussels Belgium
De Smedt, Isabelle ; Royal Belgian Institute for Space Aeronomy (BIRA‐IASB) Brussels Belgium
Stremme, Wolfgang; Instituto de Ciencias de la Atmósfera y Cambio Climático Universidad Nacional Autónoma de México Mexico City Mexico
Hannigan, James W. ; Atmospheric Chemistry, Observations & Modeling National Center for Atmospheric Research (NCAR) Boulder CO USA
Notholt, Justus ; Institute of Environmental Physics University of Bremen Bremen Germany
Sun, Xiaoyu; Institute of Environmental Physics University of Bremen Bremen Germany
Palm, Mathias ; Institute of Environmental Physics University of Bremen Bremen Germany
Petri, Cristof ; Institute of Environmental Physics University of Bremen Bremen Germany
Strong, Kimberly ; Department of Physics University of Toronto Toronto ON Canada
Röhling, Amelie N. ; Institute of Meteorology and Climate Research (IMK‐ASF) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe infra-rouge de physique atmosphérique et solaire (GIRPAS)
Smale, Dan ; National Institute of Water & Atmospheric Research (NIWA) Lauder New Zealand
Té, Yao ; Sorbonne Université CNRS MONARIS UMR8233 Paris France
Morino, Isamu ; National Institute for Environmental Studies (NIES) Tsukuba Japan
Murata, Isao; Graduate School of Environmental Studies Tohoku University Sendai Japan
Nagahama, Tomoo; Institute for Space‐Earth Environmental Research (ISEE) Nagoya University Nagoya Japan
Kivi, Rigel ; Space and Earth Observation Centre Finnish Meteorological Institute Sodankylä Finland
Makarova, Maria; Atmospheric Physics Department Saint Petersburg State University St. Petersburg Russia
Jones, Nicholas ; Centre for Atmospheric Chemistry University of Wollongong Wollongong NSW Australia
Sussmann, Ralf; Karlsruhe Institute of Technology (KIT) IMK‐IFU Garmisch‐Partenkirchen Germany
Zhou, Minqiang ; Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China
Anderson, L. G., Lanning, J. A., Barrell, R., Miyagishima, J., Jones, R. H., & Wolfe, P. (1996). Sources and sinks of formaldehyde and acetaldehyde: An analysis of Denver’s ambient concentration data. Atmospheric Environment, 30(12), 2113–2123. https://doi.org/10.1016/1352-2310(95)00175-1
Antonov, J., Seidov, D., Boyer, T., Locarnini, R., Mishonov, A., Garcia, H., et al. (2010). In S. Levitus (Ed.), World ocean atlas 2009 volume 2: Salinity, NOAA atlas NESDIS 69 (Unpublished doctoral dissertation) (p. 184). US Government Printing Office.
Bak, J., Liu, X., Kim, J.-H., Haffner, D. P., Chance, K., Yang, K., & Sun, K. (2017). Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals. Atmospheric Measurement Techniques, 10(11), 4373–4388. https://doi.org/10.5194/amt-10-4373-2017
Barkley, M. P., Smedt, I. D., Van Roozendael, M., Kurosu, T. P., Chance, K., Arneth, A., et al. (2013). Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. Journal of Geophysical Research: Atmospheres, 118(12), 6849–6868. https://doi.org/10.1002/jgrd.50552
Beirle, S., Lampel, J., Lerot, C., Sihler, H., & Wagner, T. (2017). Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives. Atmospheric Measurement Techniques, 10(2), 581–598. https://doi.org/10.5194/amt-10-581-2017
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., et al. (2001). Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research, 106(D19), 23073–23095. https://doi.org/10.1029/2001jd000807
Boersma, K., Eskes, H., Dirksen, R., Van Der A, R., Veefkind, J., Stammes, P., et al. (2011). An improved tropospheric NO2 column retrieval algorithm for the ozone monitoring instrument. Atmospheric Measurement Techniques, 4(9), 1905–1928. https://doi.org/10.5194/amt-4-1905-2011
Brune, W. H., Tan, D., Faloona, I., Jaeglé, L., Jacob, D. J., Heikes, B., et al. (1999). OH and HO2 chemistry in the North Atlantic free troposphere. Geophysical Research Letters, 26(20), 3077–3080. https://doi.org/10.1029/1999gl900549
Chance, K. (2007). OMI/Aura Formaldehyde (HCHO) Total Column 1-orbit L2 Swath 13x24 km [Dataset]. NASA Goddard Earth Sciences Data and Information Services Center. https://doi.org/10.5067/AURA/OMI/DATA2015
Chance, K., Kurosu, T. P., & Sioris, C. E. (2005). Undersampling correction for array detector-based satellite spectrometers. Applied Optics, 44(7), 1296–1304. https://doi.org/10.1364/ao.44.001296
Chance, K., & Kurucz, R. L. (2010). An improved high-resolution solar reference spectrum for Earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(9), 1289–1295. https://doi.org/10.1016/j.jqsrt.2010.01.036
Chance, K., & Orphal, J. (2011). Revised ultraviolet absorption cross sections of H2CO for the HITRAN database. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(9), 1509–1510. https://doi.org/10.1016/j.jqsrt.2011.02.002
Chance, K., Palmer, P. I., Spurr, R. J., Martin, R. V., Kurosu, T. P., & Jacob, D. J. (2000). Satellite observations of formaldehyde over North America from GOME. Geophysical Research Letters, 27(21), 3461–3464. https://doi.org/10.1029/2000gl011857
Chance, K., & Spurr, R. J. (1997). Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Applied Optics, 36(21), 5224–5230. https://doi.org/10.1364/ao.36.005224
Chong, H., González Abad, G., Nowlan, C. R., Chan Miller, C., Saiz-Lopez, A., Fernandez, R. P., et al. (2024). Global retrieval of stratospheric and tropospheric BrO columns from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) on board the Suomi-NPP satellite. Atmospheric Measurement Techniques, 17(9), 2873–2916. https://doi.org/10.5194/amt-17-2873-2024
Cox, C., & Munk, W. (1954). Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. Josa, 44(11), 838–850. https://doi.org/10.1364/josa.44.000838
De Smedt, I., Müller, J.-F., Stavrakou, T., Van Der A, R., Eskes, H., & Van Roozendael, M. (2008). Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 8(16), 4947–4963. https://doi.org/10.5194/acp-8-4947-2008
De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., et al. (2021). Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements. Atmospheric Chemistry and Physics, 21(16), 12561–12593. https://doi.org/10.5194/acp-21-12561-2021
De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., et al. (2015). Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations. Atmospheric Chemistry and Physics, 15(21), 12519–12545. https://doi.org/10.5194/acp-15-12519-2015
De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., et al. (2018). Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmospheric Measurement Techniques, 11(4), 2395–2426. https://doi.org/10.5194/amt-11-2395-2018
De Smedt, I., Van Roozendael, M., Stavrakou, T., Müller, J.-F., Lerot, C., Theys, N., et al. (2012). Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmospheric Measurement Techniques, 5(11), 2933–2949. https://doi.org/10.5194/amt-5-2933-2012
Dirksen, R., Dobber, M., Voors, R., & Levelt, P. (2006). Prelaunch characterization of the ozone monitoring instrument transfer function in the spectral domain. Applied Optics, 45(17), 3972–3981. https://doi.org/10.1364/ao.45.003972
Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., et al. (2010). Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmospheric Environment, 44(18), 2213–2223. https://doi.org/10.1016/j.atmosenv.2010.03.010
ESA & DLR. (2019a). Sentinel-5P TROPOMI tropospheric formaldehyde HCHO 1-orbit L2 5.5 km × 3.5km [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). (Copernicus Sentinel data processed by ESA, German Aerospace Center (DLR)). https://doi.org/10.5270/S5P-vg1i7t0
ESA & DLR. (2019b). Sentinel-5P TROPOMI tropospheric formaldehyde HCHO 1-orbit L2 7 km × 3.5 km [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). (Copernicus Sentinel data processed by ESA, German Aerospace Center (DLR)). https://doi.org/10.5270/S5P-vg1i7t0
Fasnacht, Z., Vasilkov, A., Haffner, D., Qin, W., Joiner, J., Krotkov, N., et al. (2019). A geometry-dependent surface Lambertian-equivalent reflectivity product for UV–Vis retrievals–part 2: Evaluation over open ocean. Atmospheric Measurement Techniques, 12(12), 6749–6769. https://doi.org/10.5194/amt-12-6749-2019
Fetterer, F., Knowles, K., Meier, W., Savoie, M., & Windnagel, A. (2017). Sea ice index, version 3. National Snow and Ice Data Center.
Finkenzeller, H., & Volkamer, R. (2022). O2–O2 CIA in the gas phase: Cross-section of weak bands, and continuum absorption between 297–500 nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 279, 108063. https://doi.org/10.1016/j.jqsrt.2021.108063
Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 global 500m SIN grid V006 [Dataset]. https://doi.org/10.5067/MODIS/MCD12Q1.006
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
GEOS-Chem Support Team. (2018). GEOS-Chem online user’s guide. Retrieved from https://geoschem.github.io/gcclassic-manpage-archive/man.GC_12/index.html
GMAO. (2015). MERRA-2 tavg1_2d_slv_Nx: 2d,1-hourly,time-averaged,single-level,assimilation,single-level diagnostics V5.12.4 [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/VJAFPLI1CSIV
González Abad, G. (2022a). OMPS-N20 L2 NM formaldehyde (HCHO) total column swath orbital V1 [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/CIYXT9A4I2F4
González Abad, G. (2022b). OMPS-NPP L2 NM formaldehyde (HCHO) total column swath orbital V1 [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/IIM1GHT07QA8
González Abad, G., Vasilkov, A., Seftor, C., Liu, X., & Chance, K. (2016). Smithsonian astrophysical observatory ozone mapping and profiler suite (SAO OMPS) formaldehyde retrieval. Atmospheric Measurement Techniques, 9(7), 2797–2812. https://doi.org/10.5194/amt-9-2797-2016
Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H., Maruyama, H., et al. (1999). The global land one-kilometer base elevation (globe) digital elevation model, version 1.0 (Vol. 325, pp. 80305–83328). National Oceanic and Atmospheric Administration, National Geophysical Data Center.
Howlett, C., González Abad, G., Chan Miller, C., Nowlan, C. R., Ayazpour, Z., & Zhu, L. (2023). The influence of snow cover on ozone monitor instrument formaldehyde observations. Atmósfera, 37. https://doi.org/10.20937/ATM.53134
Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1), C01011. https://doi.org/10.1029/2011jc007395
Ingmann, P., Veihelmann, B., Langen, J., Lamarre, D., Stark, H., & Courrèges-Lacoste, G. B. (2012). Requirements for the GMES atmosphere service and ESA’s implementation concept: Sentinels-4/-5 and-5P. Remote Sensing of Environment, 120, 58–69. https://doi.org/10.1016/j.rse.2012.01.023
Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan, B., et al. (2017). Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends. Journal of Geophysical Research: Atmospheres, 122(19), 10–439. https://doi.org/10.1002/2017jd026720
Jin, X., & Holloway, T. (2015). Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument. Journal of Geophysical Research: Atmospheres, 120(14), 7229–7246. https://doi.org/10.1002/2015JD023250
Jung, Y., González Abad, G., Nowlan, C. R., Chance, K., Liu, X., Torres, O., & Ahn, C. (2019). Explicit aerosol correction of OMI formaldehyde retrievals. Earth and Space Science, 6(11), 2087–2105. https://doi.org/10.1029/2019ea000702
Kaiser, J., Jacob, D. J., Zhu, L., Travis, K. R., Fisher, J. A., González Abad, G., et al. (2018). High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: Application to the Southeast US. Atmospheric Chemistry and Physics, 18(8), 5483–5497. https://doi.org/10.5194/acp-18-5483-2018
Kim, J., Jeong, U., Ahn, M.-H., Kim, J. H., Park, R. J., Lee, H., et al. (2020). New era of air quality monitoring from space: Geostationary environment monitoring spectrometer (GEMS). Bulletin of the American Meteorological Society, 101(1), E1–E22. https://doi.org/10.1175/bams-d-18-0013.1
Kleipool, Q. (2021a). OMI/Aura level 1B averaged solar irradiances V004 [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/Aura/OMI/DATA1401
Kleipool, Q. (2021b). OMI/Aura level 1B UV global geolocated Earthshine radiances V004 [Dataset]. Archived by National Aeronautics and Space Administration, U.S. Government, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/AURA/OMI/DATA1402
Kleipool, Q., Dobber, M., de Haan, J., & Levelt, P. (2008). Earth surface reflectance climatology from 3 years of OMI data. Journal of Geophysical Research, 113(D18), D18308. https://doi.org/10.1029/2008jd010290
Kleipool, Q., Rozemeijer, N., van Hoek, M., Leloux, J., Loots, E., Ludewig, A., et al. (2022). Ozone monitoring instrument (OMI) collection 4: Establishing a 17-year-long series of detrended level-1b data. Atmospheric Measurement Techniques, 15(11), 3527–3553. https://doi.org/10.5194/amt-15-3527-2022
Kurosu, T. P., Chance, K., & Sioris, C. E. (2004). Preliminary results for HCHO and BrO from the EOS-aura ozone monitoring instrument. In S. C. Tsay, T. Yokota, & M.-H. Ahn (Eds.), Passive optical remote sensing of the atmosphere and clouds IV (Vol. 5652, pp. 116–123). SPIE. https://doi.org/10.1117/12.578606
Kuttippurath, J., Abbhishek, K., Gopikrishnan, G., & Pathak, M. (2022). Investigation of long–term trends and major sources of atmospheric HCHO over India. Environmental Challenges, 7, 100477. https://doi.org/10.1016/j.envc.2022.100477
Kwon, H.-A., Abad, G. G., Nowlan, C., Chong, H., Souri, A., Vigouroux, C., et al. (2023). Validation of OMPS Suomi NPP and OMPS NOAA-20 formaldehyde total columns with NDACC FTIR observations. Earth and Space Science, 10(5), e2022EA002778. https://doi.org/10.1029/2022ea002778
Kwon, H.-A., Park, R. J., González Abad, G., Chance, K., Kurosu, T. P., Kim, J., et al. (2019). Description of a formaldehyde retrieval algorithm for the geostationary environment monitoring spectrometer (GEMS). Atmospheric Measurement Techniques, 12(7), 3551–3571. https://doi.org/10.5194/amt-12-3551-2019
Kwon, H.-A., Park, R. J., Jeong, J. I., Lee, S., González Abad, G., Kurosu, T. P., et al. (2017). Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia. Atmospheric Chemistry and Physics, 17(7), 4673–4686. https://doi.org/10.5194/acp-17-4673-2017
Langerock, B., De Mazière, M., Hendrick, F., Vigouroux, C., Desmet, F., Dils, B., & Niemeijer, S. (2015). Description of algorithms for co-locating and comparing gridded model data with remote-sensing observations. Geoscientific Model Development, 8(3), 911–921. https://doi.org/10.5194/gmd-8-911-2015
Lee, G. T., Park, R. J., Kwon, H.-A., Ha, E. S., Lee, S. D., Shin, S., et al. (2024). First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period. Atmospheric Chemistry and Physics, 24(8), 4733–4749. https://doi.org/10.5194/acp-24-4733-2024
Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., et al. (2018). The ozone monitoring instrument: Overview of 14 years in space. Atmospheric Chemistry and Physics, 18(8), 5699–5745. https://doi.org/10.5194/acp-18-5699-2018
Levelt, P. F., Van Den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., De Vries, J., et al. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093–1101. https://doi.org/10.1109/tgrs.2006.872333
Levitus, S., & US NODC, U. N. O. D. C. (2013). NODC standard product: World Ocean Atlas 2009 (NCEI Accession 0094866) [Dataset]. NOAA National Centers for Environmental Information. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0094866
Li, C., Joiner, J., Krotkov, N. A., & Dunlap, L. (2015). A new method for global retrievals of HCHO total columns from the Suomi national polar-orbiting partnership ozone mapping and profiler suite. Geophysical Research Letters, 42(7), 2515–2522. https://doi.org/10.1002/2015gl063204
Li, D., Wang, S., Xue, R., Zhu, J., Zhang, S., Sun, Z., & Zhou, B. (2021). OMI-observed HCHO in shanghai, China, during 2010–2019 and ozone sensitivity inferred by an improved HCHO/NO2 ratio. Atmospheric Chemistry and Physics, 21(20), 15447–15460. https://doi.org/10.5194/acp-21-15447-2021
Liao, J., Hanisco, T. F., Wolfe, G. M., St Clair, J., Jimenez, J. L., Campuzano-Jost, P., et al. (2019). Towards a satellite formaldehyde–in situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 19(5), 2765–2785. https://doi.org/10.5194/acp-19-2765-2019
Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489
Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., & Brion, J. (1995). Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence. Journal of Atmospheric Chemistry, 21(3), 263–273. https://doi.org/10.1007/bf00696758
Marais, E. A., Jacob, D. J., Guenther, A., Chance, K., Kurosu, T. P., Murphy, J. G., et al. (2014). Improved model of isoprene emissions in Africa using ozone monitoring instrument (OMI) satellite observations of formaldehyde: Implications for oxidants and particulate matter. Atmospheric Chemistry and Physics, 14(15), 7693–7703. https://doi.org/10.5194/acp-14-7693-2014
Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., et al. (2016). Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: Application to the Southeast United States and co-benefit of SO2 emission controls. Atmospheric Chemistry and Physics, 16(3), 1603–1618. https://doi.org/10.5194/acp-16-1603-2016
Marais, E. A., Jacob, D. J., Kurosu, T., Chance, K., Murphy, J., Reeves, C., et al. (2012). Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmospheric Chemistry and Physics, 12(14), 6219–6235. https://doi.org/10.5194/acp-12-6219-2012
Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J., Bucsela, E., et al. (2002). An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical Research, 107(D20), ACH9-1–ACH9-21. https://doi.org/10.1029/2001jd001027
Martin, R. V., Fiore, A. M., & Van Donkelaar, A. (2004). Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophysical Research Letters, 31(6), L06120. https://doi.org/10.1029/2004gl019416
Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T.-M., Kurosu, T. P., Chance, K., et al. (2008). Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. Journal of Geophysical Research, 113(D2), D02307. https://doi.org/10.1029/2007jd008950
NASA Aura. (2024). Systems analysis: Potential evolution of the aura mission. Retrieved from https://aura.gsfc.nasa.gov/Potential_Evolution_of_Aura.html
NASA NSPIRES. (2022). NASA’s terra, aqua, and aura drifting orbits workshop November 1-2, 2022. Retrieved from https://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=929460/solicitationId=%7B19F4296E-5280-3996-3149-42CB166328DC%7D/viewSolicitationDocument=1/TAA_ExecutiveSummary.pdf
NDACC. (2023). Network for the detection of atmospheric composition change (NDACC) public data access [Dataset]. National Aeronautics and Space Administration (NASA). Retrieved from https://www-air.larc.nasa.gov/missions/ndacc/data.html
NOAA. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.
Nowlan, C. R., González Abad, G., Kwon, H.-A., Ayazpour, Z., Chan Miller, C., Chance, K., et al. (2023). Global formaldehyde products from the ozone mapping and profiler suite (OMPS) nadir mappers on Suomi NPP and NOAA-20. Earth and Space Science, 10(5), e2022EA002643. https://doi.org/10.1029/2022ea002643
Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr, R. J., Kurosu, T. P., et al. (2001). Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the global ozone monitoring experiment. Journal of Geophysical Research, 106(D13), 14539–14550. https://doi.org/10.1029/2000jd900772
Richter, A., Begoin, M., Hilboll, A., & Burrows, J. (2011). An improved NO2 retrieval for the GOME-2 satellite instrument. Atmospheric Measurement Techniques, 4(6), 1147–1159. https://doi.org/10.5194/amt-4-1147-2011
Rodgers, C. D., & Connor, B. J. (2003). Intercomparison of remote sounding instruments. Journal of Geophysical Research, 108(D3), 4116. https://doi.org/10.1029/2002jd002299
Schaaf, C., & Wang, Z. (2015). MCD43C1 MODIS/Terra+Aqua BRDF/AlbedoModel parameters daily L3 global 0.05Deg CMG V006 [Dataset]. Distributed by NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD43C1.006
Schaaf, C., & Wang, Z. (2021). MODIS/Terra+Aqua BRDF/AlbedoModel parameters daily L3 global 0.05Deg CMG V061 [Dataset]. Distributed by NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD43C1.061
Schenkeveld, V., Jaross, G., Marchenko, S., Haffner, D., Kleipool, Q. L., Rozemeijer, N. C., et al. (2017). In-flight performance of the ozone monitoring instrument. Atmospheric Measurement Techniques, 10(5), 1957–1986. https://doi.org/10.5194/amt-10-1957-2017
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., & Burrows, J. P. (2014). High spectral resolution ozone absorption cross-sections–part 2: Temperature dependence. Atmospheric Measurement Techniques, 7(2), 625–636. https://doi.org/10.5194/amt-7-625-2014
Souri, A. H., Choi, Y., Jeon, W., Woo, J.-H., Zhang, Q., & Kurokawa, J.-I. (2017). Remote sensing evidence of decadal changes in major tropospheric ozone precursors over East Asia. Journal of Geophysical Research: Atmospheres, 122(4), 2474–2492. https://doi.org/10.1002/2016JD025663
Souri, A. H., Nowlan, C. R., González Abad, G., Zhu, L., Blake, D. R., Fried, A., et al. (2020). An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics, 20(16), 9837–9854. https://doi.org/10.5194/acp-20-9837-2020
Spurr, R. J. (2006). VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer, 102(2), 316–342. https://doi.org/10.1016/j.jqsrt.2006.05.005
Spurr, R. J. (2008). LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In Light scattering reviews 3: Light scattering and reflection (pp. 229–275).
Spurr, R. J., & Christi, M. (2019). The LIDORT and VLIDORT linearized scalar and vector discrete ordinate radiative transfer models: Updates in the last 10 years. In Springer series in light scattering: Volume 3: Radiative transfer and light scattering (pp. 1–62).
Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., Van Der Werf, G., Giglio, L., & Guenther, A. (2009a). Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns. Atmospheric Chemistry and Physics, 9(3), 1037–1060. https://doi.org/10.5194/acp-9-1037-2009
Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., Van Der Werf, G., Giglio, L., & Guenther, A. (2009b). Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmospheric Chemistry and Physics, 9(11), 3663–3679. https://doi.org/10.5194/acp-9-3663-2009
Su, W., Liu, C., Hu, Q., Zhang, C., Liu, H., Xia, C., et al. (2022). First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: Locating source of volatile organic compounds. Environmental Pollution, 297, 118691. https://doi.org/10.1016/j.envpol.2021.118691
Su, W., Liu, C., Hu, Q., Zhao, S., Sun, Y., Wang, W., et al. (2019). Primary and secondary sources of ambient formaldehyde in the Yangtze River delta based on ozone mapping and profiler suite (OMPS) observations. Atmospheric Chemistry and Physics, 19(10), 6717–6736. https://doi.org/10.5194/acp-19-6717-2019
Sun, K., Liu, X., Huang, G., González Abad, G., Cai, Z., Chance, K., & Yang, K. (2017). Deriving the slit functions from OMI solar observations and its implications for ozone-profile retrieval. Atmospheric Measurement Techniques, 10(10), 3677–3695. https://doi.org/10.5194/amt-10-3677-2017
Sun, K., Zhu, L., Cady-Pereira, K., Chan Miller, C., Chance, K., Clarisse, L., et al. (2018). A physics-based approach to oversample multi-satellite, multispecies observations to a common grid. Atmospheric Measurement Techniques, 11(12), 6679–6701. https://doi.org/10.5194/amt-11-6679-2018
Surl, L., Palmer, P. I., & González Abad, G. (2018). Which processes drive observed variations of HCHO columns over India? Atmospheric Chemistry and Physics, 18(7), 4549–4566. https://doi.org/10.5194/acp-18-4549-2018
Thalman, R., & Volkamer, R. (2013). Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Physical Chemistry Chemical Physics, 15(37), 15371–15381. https://doi.org/10.1039/c3cp50968k
Thomas, W., Hegels, E., Slijkhuis, S., Spurr, R. J., & Chance, K. (1998). Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME spectrometer. Geophysical Research Letters, 25(9), 1317–1320. https://doi.org/10.1029/98gl01087
Tilstra, L. G., Tuinder, O. N. E., Wang, P., & Stammes, P. (2017). Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY. Journal of Geophysical Research: Atmospheres, 122(7), 4084–4111. https://doi.org/10.1002/2016JD025940
Travis, K., Judd, L., Crawford, J., Chen, G., Szykman, J., Whitehill, A., et al. (2022). Can column formaldehyde observations inform air quality monitoring strategies for ozone and related photochemical oxidants? Journal of Geophysical Research: Atmospheres, 127(13), e2022JD036638. https://doi.org/10.1029/2022jd036638
U.S. National Ice Center. (2008). IMS daily Northern Hemisphere snow and ice analysis at 1 km, 4 km, and 24 km resolutions, version 1 [Dataset]. National Snow Ice Data Center. https://doi.org/10.7265/N52R3PMC
Valin, L., Fiore, A., Chance, K., & González Abad, G. (2016). The role of OH production in interpreting the variability of CH2O columns in the Southeast US. Journal of Geophysical Research: Atmospheres, 121(1), 478–493. https://doi.org/10.1002/2015jd024012
Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., et al. (1998). Measurements of the NO2 absorption cross-section from 42 000 cm- 1 to 10 000 cm- 1 (238–1000 nm) at 220 K and 294 K. Journal of Quantitative Spectroscopy and Radiative Transfer, 59(3–5), 171–184. https://doi.org/10.1016/s0022-4073(97)00168-4
Veefkind, J. P., Boersma, K. F., Wang, J., Kurosu, T. P., Krotkov, N., Chance, K., & Levelt, P. F. (2011). Global satellite analysis of the relation between aerosols and short-lived trace gases. Atmospheric Chemistry and Physics, 11(3), 1255–1267. https://doi.org/10.5194/acp-11-1255-2011
Veefkind, J. P., de Haan, J. F., Sneep, M., & Levelt, P. F. (2016). Improvements to the OMI O2–O2 operational cloud algorithm and comparisons with ground-based radar–lidar observations. Atmospheric Measurement Techniques, 9(12), 6035–6049. https://doi.org/10.5194/amt-9-6035-2016
Vigouroux, C., Bauer Aquino, C. A., Bauwens, M., Becker, C., Blumenstock, T., De Mazière, M., et al. (2018). NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques, 11(9), 5049–5073. https://doi.org/10.5194/amt-11-5049-2018
Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., et al. (2020). TROPOMI–Sentinel-5 precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmospheric Measurement Techniques, 13(7), 3751–3767. https://doi.org/10.5194/amt-13-3751-2020
Vrekoussis, M., Wittrock, F., Richter, A., & Burrows, J. P. (2010). GOME-2 observations of oxygenated VOCs: What can we learn from the ratio glyoxal to formaldehyde on a global scale? Atmospheric Chemistry and Physics, 10(21), 10145–10160. https://doi.org/10.5194/acp-10-10145-2010
Wang, H., González Abad, G., Chan Miller, C., Kwon, H.-A., Nowlan, C. R., Ayazpour, Z., et al. (2023). Development of the measures blue band water vapor algorithm—Towards a long-term data record. Atmospheric Measurement Techniques Discussions, 1–32. https://doi.org/10.5194/amt-2023-66
Wang, H., Wu, Q., Guenther, A. B., Yang, X., Wang, L., Xiao, T., et al. (2021). A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: The roles of land cover change and climate variability. Atmospheric Chemistry and Physics, 21(6), 4825–4848. https://doi.org/10.5194/acp-21-4825-2021
Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y., & Román, M. O. (2018). Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sensing of Environment, 207, 50–64. https://doi.org/10.1016/j.rse.2018.02.001
Werdell, J., O’Reilly, J., Hu, C., Feng, L., Lee, Z., Franz, B., et al. (2023). Chlorophyll a, NASA algorithm publication tool, 2023-11-06, v1.1. https://doi.org/10.5067/JCQB8QALDOYD
Wilmouth, D. M., Hanisco, T. F., Donahue, N. M., & Anderson, J. G. (1999). Fourier transform ultraviolet spectroscopy of the A 2π3/2 ←X2π3/2 transition of BrO. The Journal of Physical Chemistry A, 103(45), 8935–8945. https://doi.org/10.1021/jp991651o
Wittrock, F., Richter, A., Oetjen, H., Burrows, J. P., Kanakidou, M., Myriokefalitakis, S., et al. (2006). Simultaneous global observations of glyoxal and formaldehyde from space. Geophysical Research Letters, 33(16), L16804. https://doi.org/10.1029/2006GL026310
Wolfe, G. M., Nicely, J. M., Clair, J. M. S., Hanisco, T. F., Liao, J., Oman, L. D., et al. (2019). Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proceedings of the National Academy of Sciences of the United States of America, 116(23), 11171–11180. https://doi.org/10.1073/pnas.1821661116
Wu, X., Wen, J., Xiao, Q., You, D., Liu, Q., & Lin, X. (2018). Forward a spatio-temporal trend surface for long-term ground-measured albedo upscaling over heterogeneous land surface. International Journal of Digital Earth, 11(5), 470–484. https://doi.org/10.1080/17538947.2017.1334097
Zhao, T., Mao, J., Ayazpour, Z., González Abad, G., Nowlan, C. R., & Zheng, Y. (2024). Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes. Atmospheric Chemistry and Physics, 24(10), 6105–6121. https://doi.org/10.5194/acp-24-6105-2024
Zhou, Y., Brunner, D., Boersma, K. F., Dirksen, R., & Wang, P. (2009). An improved tropospheric NO2 retrieval for OMI observations in the vicinity of mountainous terrain. Atmospheric Measurement Techniques, 2(2), 401–416. https://doi.org/10.5194/amt-2-401-2009
Zhu, L., González Abad, G., Nowlan, C. R., Chan Miller, C., Chance, K., Apel, E. C., et al. (2020). Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns. Atmospheric Chemistry and Physics, 20(20), 12329–12345. https://doi.org/10.5194/acp-20-12329-2020
Zhu, L., Jacob, D. J., Keutsch, F. N., Mickley, L. J., Scheffe, R., Strum, M., et al. (2017). Formaldehyde (HCHO) as a hazardous air pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States. Environmental Science & Technology, 51(10), 5650–5657. https://doi.org/10.1021/acs.est.7b01356
Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., et al. (2016). Observing atmospheric formaldehyde (HCHO) from space: Validation and intercomparison of six retrievals from satellites (OMI, GOME2a, GOME2b, OMPS) with seac4rs aircraft observations over the Southeast US. Atmospheric Chemistry and Physics, 16(21), 13477–13490. https://doi.org/10.5194/acp-16-13477-2016
Zhu, L., Mickley, L. J., Jacob, D. J., Marais, E. A., Sheng, J., Hu, L., et al. (2017). Long-term (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds. Geophysical Research Letters, 44(13), 7079–7086. https://doi.org/10.1002/2017GL073859
Zoogman, P., Liu, X., Suleiman, R., Pennington, W., Flittner, D., Al-Saadi, J., et al. (2017). Tropospheric emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 17–39. https://doi.org/10.1016/j.jqsrt.2016.05.008