[en] Oxazolidinones (linezolid and tedizolid) adverse reactions include thrombocytopenia, the mechanism of which is still largely unknown. In cultured cells, oxazolidinones impair mitochondrial protein synthesis and oxidative metabolism. As mitochondrial activity is essential for megakaryocyte differentiation and maturation into platelets, we examined whether oxazolidinones impair these processes ex vivo and alter, in parallel, the activity of mitochondrial cytochrome c-oxidase (CYTOX; enzyme partly encoded by the mitochondrial genome) and cell morphology. Human CD34+ cells were isolated, incubated with cytokines (up to 14 days) and clinically relevant oxazolidinone concentrations or in control conditions, and used for (i) clonogenic assays [counting of megakaryocyte (CFU-Mk), granulocyte-monocyte (CFU-GM), burst-forming unit-erythroid (BFU-E) colonies]; (ii) the measure of the expression of megakaryocyte surface antigens (CD34 to CD41 and CD42); (iii) counting of proplatelets; (iv) the measurement of CYTOX activity; and (v) cell morphology (optic and electron microscopy). Oxazolidinones caused a significant decrease in BFU-E but not CFU-Mk or CFU-GM colonies. Yet, the megakaryocytic lineage was markedly affected, with a decreased differentiation of CD34+ into CD41+/CD42+ cells, an abolition of proplatelet formation and striking decrease in the numbers of large polylobulated nucleus megakaryocytes, with a complete loss of intracellular demarcation membrane system, disappearance of mitochondria, and suppression of CYTOX activity. These alterations were more marked in cells incubated with tedizolid than linezolid. These data suggest that oxazolidinones may induce thrombocytopenia by impairing megakaryocytic differentiation through mitochondrial dysfunction. Pharmacological interventions to prevent this toxicity might therefore be difficult as mitochondrial toxicity is most probably inherently linked to their antibacterial activity.
Disciplines :
Hematology
Author, co-author :
Milosevic, Tamara V; Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
VERTENOEIL, Gaëlle ✱; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique ; Signal Transduction and Molecular Hematology Unit (SIGN), de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium ; Ludwig Institute for Cancer Research, Brussels, Belgium
Vainchenker, William; UMR 1170, Institut National de la Santé et de la Recherche Médicale, Université de Paris-Sud & Institut Gustave Roussy, Villejuif, France
Tulkens, Paul M ; Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
Constantinescu, Stefan N; Signal Transduction and Molecular Hematology Unit (SIGN), de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium ; Ludwig Institute for Cancer Research, Brussels, Belgium ; WELBIO Department, WEL Research Institute, Wavre, Belgium ; Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
Van Bambeke, Françoise ; Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
✱ These authors have contributed equally to this work.
Language :
English
Title :
Oxazolidinone antibiotics impair ex vivo megakaryocyte differentiation from hematopoietic progenitor cells and their maturation into platelets.
LICR - Ludwig Institute for Cancer Research Stichting Tegen Kanker Salus Sanguinis Les Avions de Sébastien ASBL WRI. WELBIO - Wel Research Institute. Walloon Excellence in Life Sciences and Biotechnology Ligue Contre le Cancer INCa - Institut National du Cancer INSERM - Institut National de la Santé et de la Recherche Médicale
Funding text :
P.M.T. and F.V.B. have received speaker's and advisory boards' honoraria from Bayer and Merck (holders of marketing rights of tedizolid) and research grants from Trius Pharmaceuticals (now part of Merck) for preclinical studies of tedizolid. These companies were not involved in the design and performance of the studies presented here and did not take any part in their interpretation and/or decision to submit them to publication. The other authors have no conflict of interest to disclose in relation to the present work.We thank Prof. Carine Michiels (Universit\u00E9 de Namur, Namur, Belgium) for help in the preparation of samples for electron microscopy and Novartis Pharma AG, Basel, Switzerland, for providing us the sample of eltrombopag used in our studies. Virginie Mohymont and Katia Santos-Saial (Universit\u00E9 catholique de Louvain), and Lidvine Genet and Caroline De Bona (Universit\u00E9 de Namur) provided dedicated technical assistance. We thank Dr. Nicolas Dauguet for flow cytometry assistance. T.V.M. was supported by the Universit\u00E9 catholique de Louvain and G.V. by a PhD Mandat Aspirant of the FRS-FNRS Belgium. F.V.B. is Research Director of FRS-FNRS Belgium. This work was supported by the general budget awarded from various sources to F.V.B. Funding to S.N.C. is acknowledged from Ludwig Institute for Cancer Research, Fondation contre le cancer, Salus Sanguinis, and Fondation \u201CLes avions de S\u00E9bastien\u201D, projects Actions de recherche concert\u00E9e (ARC) 16/21\u2013073 and Wel Research Institute WelBio F 44/8/5 - MCF/UIG \u2013 10955. Funding of W.V. is acknowledged from Ligue Nationale Contre le Cancer (\u201CEquipe labellis\u00E9e 2016\u201D, H.R.), Institut National du Cancer (INCA-PLBIO-2015, I.P.), and Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale (Inserm). T.V.M. and G.V. designed and performed all experiments and analyzed the results. W.V. examined and interpreted the electron microscopy images presented here and made substantial contributions to the interpretation of all data. S.N.C. provided guidance throughout the study and made essential contributions in the interpretation of all data. P.M.T. and F.V.B. initiated the work, supervised all steps of the studies, and actively participated in the interpretation of all data. T.M., P.M.T., and F.V.B. wrote the paper. All authors commented, made corrections, and approved the submitted version. Funder Grant(s) Author(s) Ludwig Institute for Cancer Research Stefan N. Constantinescu Stichting Tegen Kanker (Fondation Contre le Cancer) Stefan N. Constantinescu Salus Sanguinis Stefan N. Constantinescu Les avions de S\u00E9bastien Stefan N. Constantinescu Actions de recherche Concert\u00E9e 16/21-073 Stefan N. Constantinescu Wel research Institute Welbio F 44/8/5 - MCF/UIG - 10955 Stefan N. Constantinescu Ligue Contre le Cancer (French League Against Cancer) William Vainchenker Institut National Du Cancer (INCa) INCA-PLBIO-2015 William Vainchenker Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale (Inserm) William VainchenkerT.V.M. was supported by the Universit\u00E9 catholique de Louvain and G.V. by a PhD Mandat Aspirant of the FRS-FNRS Belgium. F.V.B. is Research Director of FRS-FNRS Belgium. This work was supported by the general budget awarded from various sources to F.V.B. Funding to S.N.C. is acknowledged from Ludwig Institute for Cancer Research, Fondation contre le cancer, Salus Sanguinis, and Fondation \u201CLes avions de S\u00E9bastien\u201D, projects Actions de recherche concert\u00E9e (ARC) 16/21\u2013073 and Wel Research Institute WelBio F 44/8/5 - MCF/UIG \u2013 10955. Funding of W.V. is acknowledged from Ligue Nationale Contre le Cancer (\u201CEquipe labellis\u00E9e 2016\u201D, H.R.), Institut National du Cancer (INCA-PLBIO-2015, I.P.), and Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale (Inserm).
Strain J. 2014. Three new agents added to the arsenal to fight MRSA. S D Med 67:513–514.
Kuter DJ, Tillotson GS. 2001. Hematologic effects of antimicrobials: focus on the oxazolidinone linezolid. Pharmacotherapy 21:1010–1013. https://doi.org/10.1592/phco.21.11.1010.34517
Rabon AD, Fisher JP, MacVane SH. 2018. Incidence and risk factors for development of thrombocytopenia in patients treated with linezolid for 7 days or greater. Ann Pharmacother 52:1162–1164. https://doi.org/10.1177/1060028018783498
Anonymous. ZYVOX - linezolid injection solution - prescribing information. Pharmacia and Upjohn Company, Division of Pfizer Inc, NY, NY. Available from: http://labeling.pfizer.com/showlabeling.aspx?id=649. Accessed May 1, 2023
Anonymous. SIVEXTRO (tedizolid phosphate) for injection, for intravenous use - prescribing information. White House Station, NJ. Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc, White House Station, NJ. Available from: https://www.merck.com/product/usa/pi_circulars/s/sivextro/sivextro_pi.pdf. Accessed May 1, 2023
Gerson SL, Kaplan SL, Bruss JB, Le V, Arellano FM, Hafkin B, Kuter DJ. 2002. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother 46:2723–2726. https://doi.org/10.1128/AAC.46.8.2723-2726.2002
Tsuji Y, Hiraki Y, Matsumoto K, Mizoguchi A, Kobayashi T, Sadoh S, Morita K, Kamimura H, Karube Y. 2011. Thrombocytopenia and anemia caused by a persistent high linezolid concentration in patients with renal dysfunction. J Infect Chemother 17:70–75. https://doi.org/10.1007/ s10156-010-0080-6
Matsumoto K, Takeshita A, Ikawa K, Shigemi A, Yaji K, Shimodozono Y, Morikawa N, Takeda Y, Yamada K. 2010. Higher linezolid exposure and higher frequency of thrombocytopenia in patients with renal dysfunction. Int J Antimicrob Agents 36:179–181. https://doi.org/10.1016/j.ijantimicag.2010.02.019
Boak LM, Rayner CR, Grayson ML, Paterson DL, Spelman D, Khumra S, Capitano B, Forrest A, Li J, Nation RL, Bulitta JB. 2014. Clinical population pharmacokinetics and toxicodynamics of linezolid. Antimicrob Agents Chemother 58:2334–2343. https://doi.org/10.1128/AAC.01885-13
Bernstein WB, Trotta RF, Rector JT, Tjaden JA, Barile AJ. 2003. Mechanisms for linezolid-induced anemia and thrombocytopenia. Ann Pharmacother 37:517–520. https://doi.org/10.1345/aph.1C361
Tsuji Y, Holford NHG, Kasai H, Ogami C, Heo YA, Higashi Y, Mizoguchi A, To H, Yamamoto Y. 2017. Population pharmacokinetics and pharmacodynamics of linezolid-induced thrombocytopenia in hospitalized patients. Br J Clin Pharmacol 83:1758–1772. https://doi.org/10.1111/bcp. 13262
Sasaki T, Takane H, Ogawa K, Isagawa S, Hirota T, Higuchi S, Horii T, Otsubo K, Ieiri I. 2011. Population pharmacokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia, in Japanese patients. Antimicrob Agents Chemother 55:1867–1873. https://doi.org/10.1128/AAC.01185-10
Flanagan S, McKee EE, Das D, Tulkens PM, Hosako H, Fiedler-Kelly J, Passarell J, Radovsky A, Prokocimer P. 2015. Nonclinical and pharmacokinetic assessments to evaluate the potential of tedizolid and linezolid to affect mitochondrial function. Antimicrob Agents Chemother 59:178–185. https://doi.org/10.1128/AAC.03684-14
Milosevic TV, Vertenoeil G, Payen VL, Sonveaux P, Tulkens PM, Constantinescu SN, Van Bambeke F. 2019. Prolonged inhibition and incomplete recovery of mitochondrial function in oxazolidinone-treated megakaryoblastic cell lines. Int J Antimicrob Agents 54:661–667. https:// doi.org/10.1016/j.ijantimicag.2019.07.021
Milosevic TV, Payen VL, Sonveaux P, Muccioli GG, Tulkens PM, Van Bambeke F. 2018. Mitochondrial alterations (inhibition of mitochondrial protein expression, oxidative metabolism, and ultrastructure) induced by linezolid and tedizolid at clinically relevant concentrations in cultured human HL-60 promyelocytes and THP-1 monocytes. Antimicrob Agents Chemother 62:e01599-17. https://doi.org/10.1128/AAC.01599-17
De Vriese AS, Van Coster R, Smet J, Seneca S, Lovering A, Van Haute LL, Vanopdenbosch LJ, Martin J-J, Groote CC, Vandecasteele S, Boelaert JR. 2006. Linezolid-induced inhibition of mitochondrial protein synthesis. Clin Infect Dis 42:1111–1117. https://doi.org/10.1086/501356
McKee EE, Ferguson M, Bentley AT, Marks TA. 2006. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother 50:2042–2049. https://doi.org/10.1128/AAC.01411-05
Leach KL, Swaney SM, Colca JR, McDonald WG, Blinn JR, Thomasco LM, Gadwood RC, Shinabarger D, Xiong L, Mankin AS. 2007. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 26:393–402. https://doi.org/10.1016/j.molcel.2007.04.005
Nagiec EE, Wu L, Swaney SM, Chosay JG, Ross DE, Brieland JK, Leach KL. 2005. Oxazolidinones inhibit cellular proliferation via inhibition of mitochondrial protein synthesis. Antimicrob Agents Chemother 49:3896–3902. https://doi.org/10.1128/AAC.49.9.3896-3902.2005
Debili N, Louache F, Vainchenker W. 2004. Isolation and culture of megakaryocyte precursors. Methods Mol Biol 272:293–308. https://doi.org/10.1385/1-59259-782-3:293
Mazzi S, Lordier L, Debili N, Raslova H, Vainchenker W. 2018. Megakaryocyte and polyploidization. Exp Hematol 57:1–13. https://doi.org/10.1016/j.exphem.2017.10.001
Cortin V, Pineault N, Garnier A. 2009. Ex vivo megakaryocyte expansion and platelet production from human cord blood stem cells. Methods Mol Biol 482:109–126. https://doi.org/10.1007/978-1-59745-060-7_7
Anonymous. Antimicrobial wild type distributions of microorganisms. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Available from: https://mic.eucast.org/Eucast2/. Accessed May 1, 2023
Hiraki Y, Tsuji Y, Hiraike M, Misumi N, Matsumoto K, Morita K, Kamimura H, Karube Y. 2012. Correlation between serum linezolid concentration and the development of thrombocytopenia. Scand J Infect Dis 44:60–64. https://doi.org/10.3109/00365548.2011.608712
French G. 2003. Safety and tolerability of linezolid. J Antimicrob Chemother 51 Suppl 2:ii45–53. https://doi.org/10.1093/jac/dkg253
Palis J. 2014. Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3. https://doi.org/10.3389/fphys.2014.00003
Machlus KR, Italiano JE Jr. 2013. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 201:785–796. https://doi.org/10.1083/jcb.201304054
Silvagno F, De Vivo E, Attanasio A, Gallo V, Mazzucco G, Pescarmona G. 2010. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes. PLoS One 5:e8670. https://doi.org/10.1371/journal.pone.0008670
Chen S, Su Y, Wang J. 2013. ROS-mediated platelet generation: a microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis 4:e722. https://doi.org/10.1038/cddis.2013.253
Nakamura-Ishizu A, Matsumura T, Stumpf PS, Umemoto T, Takizawa H, Takihara Y, O’Neil A, Majeed ABBA, MacArthur BD, Suda T. 2018. Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Rep 25:1772–1785. https://doi.org/10.1016/j.celrep.2018.10.059
Garrabou G, Soriano À, Pinós T, Casanova-Mollà J, Pacheu-Grau D, Morén C, García-Arumí E, Morales M, Ruiz-Pesini E, Catalán-Garcia M, Milisenda JC, Lozano E, Andreu AL, Montoya J, Mensa J, Cardellach F. 2017. Influence of mitochondrial genetics on the mitochondrial toxicity of linezolid in blood cells and skin nerve fibers. Antimicrob Agents Chemother 61:e00542-17. https://doi.org/10.1128/AAC.00542-17
Rötig A, Cormier V, Blanche S, Bonnefont JP, Ledeist F, Romero N, Schmitz J, Rustin P, Fischer A, Saudubray JM. 1990. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest 86:1601–1608. https://doi.org/10.1172/JCI114881
Santini A, Ronchi D, Garbellini M, Piga D, Protti A. 2017. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes. Expert Opin Drug Saf 16:833–843. https://doi.org/10.1080/14740338.2017.1335305
Shaw KJ, Poppe S, Schaadt R, Brown-Driver V, Finn J, Pillar CM, Shinabarger D, Zurenko G. 2008. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob Agents Chemother 52:4442–4447. https://doi.org/10.1128/AAC.00859-08
Locke JB, Finn J, Hilgers M, Morales G, Rahawi S, G C K, Picazo JJ, Im W, Shaw KJ, Stein JL. 2010. Structure-activity relationships of diverse oxazolidinones for linezolid-resistant Staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Antimicrob Agents Chemother 54:5337–5343. https://doi.org/10.1128/AAC.00663-10
Benavent E, Morata L, Escrihuela-Vidal F, Reynaga EA, Soldevila L, Albiach L, Pedro-Botet ML, Padullés A, Soriano A, Murillo O. 2021. Long-term use of tedizolid in osteoarticular infections: benefits among oxazolidinone drugs. Antibiotics (Basel) 10:53. https://doi.org/10.3390/ antibiotics10010053
Morrisette T, Molina KC, Da Silva B, Mueller SW, Damioli L, Krsak M, Miller MA, Fish DN. 2022. Real-world use of tedizolid phosphate for 28 days or more: a case series describing tolerability and clinical success. Open Forum Infect Dis 9:fac028. https://doi.org/10.1093/ofid/ofac028
Miller LG, Flores EA, Launer B, Lee P, Kalkat P, Derrah K, Agrawal S, Schwartz M, Steele G, Kim T, Kuvhenguhwa MS. 2023. Safety and tolerability of tedizolid as oral treatment for bone and joint infections. Microbiol Spectr 11:e0128223. https://doi.org/10.1128/spectrum.01282-23
Gatti M, Fusaroli M, Raschi E, Moretti U, Poluzzi E, De Ponti F. 2021. Serious adverse events with tedizolid and linezolid: pharmacovigilance insights through the FDA adverse event reporting system. Expert Opin Drug Saf 20:1421–1431. https://doi.org/10.1080/14740338.2021. 1956461
Lodise TP, Bidell MR, Flanagan SD, Zasowski EJ, Minassian SL, Prokocimer P. 2016. Characterization of the haematological profile of 21 days of tedizolid in healthy subjects. J Antimicrob Chemother 71:2553–2558. https://doi.org/10.1093/jac/dkw206
Anonymous. 2019. Human Colony-Forming Unit (CFU) Assays Using MethoCult. Stemcell Technologies, Vancouver, BC, Canada. Available from: https://www.stemcell.com/media/files/manual/MA28404Human_Colony_Forming_Unit_Assays_Using_MethoCult.pdf. Retrieved 28 Mar 2019.
Anonymous. 2019. MegaCult-C Assays for Quantitation of Human and Mouse Megakaryocytic Progenitor Cells. Stemcell Technologies, Vancouver, BC, Canada. Available from: https://cdn.stemcell.com/media/files/manual/MA28413MegaCult_C_Assays_Quantitation_Human_ Mouse_Megakaryocytic_Progenitors.pdf. Retrieved 18 Mar 2019.