Amphibian decline; Andrias japonicus; climate change; ecology; giant salamanders; habitat suitability; MaxEnt; projected distribution maps; species distribution models
Abstract :
[en] Giant salamanders are the world's largest amphibians and keystone predators in riverine ecosystems where they face global declines. Identifying environmental variables influencing their distribution is, therefore, an essential step for their conservation. This study aims to assess the current habitat suitability and distribution of the Japanese giant salamander (Andrias japonicus) and to predict changes under future climate scenarios. We used species distribution models (SDMs) over a 282,916 km² area, including 477 high-resolution occurrence data of giant salamanders and seven remote-sensing environmental predictors (climatic, topographic and land use). We projected the prediction maps, identified the most contributing variables and calculated the shifts of suitable areas for three periods (2050, 2070 and 2090) under projected climatic conditions. Climatic variables highly contributed to the distribution of giant salamanders (76% of the total), with preferences for areas with moderate precipitations during cold and wet seasons and mild summer temperatures. A moderately steep surrounding environment was favourable for salamanders, whereas the land-use variables had less influence. Future climate predictions indicate a major decrease of suitable areas. Altogether, our results highlight the habitat preferences of giant salamanders at a broad scale and the negative impact of climate change on future suitable areas. These findings provide important steps for upcoming conservation actions for this threatened species in delineating favourable distribution ranges and priority areas that should be directly affected by climate change. Finally, they emphasise the need for new research at a fine scale on disturbances to the aquatic habitat to enhance the conservation of giant salamanders.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Environmental sciences & ecology Aquatic sciences & oceanology Life sciences: Multidisciplinary, general & others
Author, co-author :
Duret, Clément ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Bartet, Tiphanie; ULiège - Université de Liège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Ecologie et de Conservation des Amphibiens (LECA)
Hambuckers, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution
Kishida, Osamu; Hokkaido University > Wakayama Experimental Forest, Field Science Center for Northern Biosphere
Okada, Sumio; The Hanzaki Research Institute of Japan
Taguchi, Yuki; Asahi Hanzaki Research Association
Takahashi, Mizuki; The Hanzaki Research Institute of Japan ; Bucknell University > Department of Biology
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution
Language :
English
Title :
Loss of habitat suitability and distribution range of the endangered Japanese giant salamander under climate change
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545. https://doi.org/10.1111/ecog.01132
Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705
Allan JD, Castillo MM, Capps KA (2021) Stream ecology: structure and function of running waters. Springer, Dordrecht, 494 pp. https://doi.org/10.1007/978-3-030-61286-3
Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33: 1712–1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x
Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
Bjordahl B, Okada S, Takahashi MK (2020) Assessment of small tributaries as possible habitats for larvae and juveniles of Japanese giant salamanders, Andrias japonicus, by coupling environmental DNA with traditional field surveys. Salamandra 56: 148–158.
Bodinof Jachowski CM, Millspaugh JJ, Hopkins WA (2016) Current land use is a poor predictor of hellbender occurrence: why assumptions matter when predicting distributions of data-deficient species. Diversity and Distributions 22: 865–880. https://doi.org/10.1111/ddi.12446
Bonett RM, Ledbetter NM, Hess AJ, Herrboldt MA, Denoël M (2022) Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Developmental Dynamics 251: 957–972. https://doi.org/10.1002/dvdy.373
Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275: 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012
Borzée A, Angulo A, Meredith H, Taguchi Y, Groffen J, Kohler DB, Abernethy JPD, Othman SN, Messenger K, Heo K, Wan L, Um TE, Zhang X, Shin Y, Bae Y, Wang Z, Qiu Z, Pearce R (2024) Protecting Japanese giant salamanders (Andrias japonicus) in the Nawa River Basin, Japan: policy recommendations addressing water pollution and waterway disruption. Frontiers in Amphibian and Reptile Science 2: 1348251. https://doi.org/10.3389/famrs.2024.1348251
Brooks GC, Kindsvater HK (2022) Early development drives variation in amphibian vulnerability to global change. Frontiers in Ecology and Evolution 10: 813414. https://doi.org/10.3389/fevo.2022.813414
Burnham KP, Anderson DR (2002) Model selection and multimodal inference: a practical information-theoretic approach. 2nd Edition. Springer-Verlag, New York, 488 pp.
Caplat P, Edelaar P, Dudaniec RY, Green AJ, Okamura B, Cote J, Ekroos J, Jonsson PR, Löndahl J, Tesson SV, Petit EJ (2016) Looking beyond the mountain: dispersal barriers in a changing world. Frontiers in Ecology and the Environment 14: 261–268. https://doi.org/10.1002/fee.1280
Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences 114: E6089–E6096. https://doi.org/10.1073/pnas.1704949114
Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024–1026. https://doi.org/10.1126/science.1206432
Chen Y, Zhang J, Jiang J, Nielsen SE, He F (2017) Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Diversity and Distributions 23: 146–157. https://doi.org/10.1111/ddi.12508
Correa Ayram CA, Mendoza ME, Etter A, Salicrup DRP (2016) Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography: Earth and Environment 40: 7–37. https://doi.org/10.1177/0309133315598713
Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332: 53–58. https://doi.org/10.1126/science.1200303
De Kort H, Baguette M, Lenoir J, Stevens VM (2020) Toward reliable habitat suitability and accessibility models in an era of multiple environmental stressors. Ecology and Evolution 10: 10937–10952. https://doi.org/10.1002/ece3.6753
Denoël M, Ficetola GF (2015) Using kernels and ecological niche modeling to delineate conservation areas in an endangered patch-breeding phenotype. Ecological Applications 25: 1922–1931. https://doi.org/10.1890/14-1041.1
Denoël M, Schmidt BR, Fonters R, Hansbauer G, Johanet A, Kühnis J, Poboljsaj K, Schweiger S, Sillero N (2023) Quantifying rarity of intraspecific diversity at multiple spatial scales by combining fine-grain citizen-based data across national boundaries. Biological Conservation 280: 109937. https://doi.org/10.1016/j.biocon.2023.109937
Dormann CF, M. McPherson J, B. Araújo M, Bivand R, Bolliger J, Carl G, G. Davies R, Hirzel A, Jetz W, Daniel Kissling W, Kühn I, Ohlemüller R, R. Peres-Neto P, Reineking B, Schröder B, M. Schurr F, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution 1: 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Elith J, H. Graham C, P. Anderson R, Dudík M, Ferrier S, Guisan A, J. Hijmans R, Huettmann F, R. Leathwick J, Lehmann A, Li J, G. Lohmann L, A. Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC. M. Overton J, Townsend Peterson A, J. Phillips S, Richardson K, Scachetti‐Pereira R, E. Schapire R, Soberón J, Williams S, S. Wisz M, E. Zimmermann N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Esselman PC, Allan JD (2011) Application of species distribution models and conservation planning software to the design of a reserve network for the riverine fishes of northeastern Mesoamerica. Freshwater Biology 56: 71–88. https://doi.org/10.1111/j.1365-2427.2010.02417.x
Ficetola GF, Bonardi A, Mücher CA, Gilissen NLM, Padoa-Schioppa E (2014) How many predictors in species distribution models at the landscape scale? Land use versus LiDAR-derived canopy height. International Journal of Geographical Information Science 28: 1723–1739. https://doi.org/10.1080/13658816.2014.891222
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315. https://doi.org/10.1002/joc.5086
Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography 27: 245–256. https://doi.org/10.1111/geb.12684
Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLOS ONE 9: e97122. https://doi.org/10.1371/journal.pone.0097122
Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, 338 pp. https://doi.org/10.1017/CBO9780511810602
Freake MJ, DePerno CS (2017) Importance of demographic surveys and public lands for the conservation of eastern hellbenders Cryptobranchus alleganiensis alleganiensis in southeast USA. PLOS ONE 12: e0179153. https://doi.org/10.1371/journal.pone.0179153
G. Da Silva Neto J, Williams LA, Lawson CR, Groves JD, Byl TD, Gibson CM, Perkins CR, Sutton WB (2023) Land-use and water-quality threats to current and historical Cryptobranchus alleganiensis streams across multiple ecoregions. Freshwater Science 42: 347–362. https://doi.org/10.1086/727800
Galante PJ, Alade B, Muscarella R, Jansa SA, Goodman SM, Anderson RP (2018) The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41: 726–736. https://doi.org/10.1111/ecog.02909
Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: with applications in R. Cambridge University Press, Cambridge, 513 pp. https://doi.org/10.1017/9781139028271
Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecology Letters 16: 1424–1435. https://doi.org/10.1111/ele.12189
Harris RMB, Porfirio LL, Hugh S, Lee G, Bindoff NL, Mackey B, Beeton NJ (2013) To be or not to be? Variable selection can change the projected fate of a threatened species under future climate. Ecological Management & Restoration 14: 230–234. https://doi.org/10.1111/emr.12055
Hatsuzuka D, Sato T, Higuchi Y (2021) Sharp rises in large-scale, long-duration precipitation extremes with higher temperatures over Japan. npj Climate and Atmospheric Science 4: 4–29. https://doi.org/10.1038/s41612-021-00184-9
He F, Zarfl C, Bremerich V, Henshaw A, Darwall W, Tockner K, Jähnig SC (2017) Disappearing giants: a review of threats to freshwater megafauna. Wiley Interdisciplinary Reviews: Water 4: e1208. https://doi.org/10.1002/wat2.1208
Hidaka S, Jo TS, Yamamoto S, Katsuhara KR, Tomita S, Miya M, Ikegami M, Ushimaru A, Minamoto T (2024) Sensitive and efficient surveillance of Japanese giant salamander (Andrias japonicus) distribution in western Japan using multi-copy nuclear DNA marker. Limnology 25: 189–198. https://doi.org/10.1007/s10201-023-00740-7
Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12: 2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x
Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling 199: 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017
Ikoma Y (1963) Notes on the giant salamander (Megalobatrachus japonicus (Temminck) Stejneger). Bulletin of the Tsuyama Museum of Science Education 1: 1–10.
Itsukushima R (2023) Historical development and the present status of Japanese dams. River Research and Applications 39: 1136–1147. https://doi.org/10.1002/rra.4129
IUCN SSC Amphibian Specialist Group (2022) Andrias japonicus. The IUCN Red List of Threatened Species 2022: e.T1273A177177761. Jenks GF (1963) Generalization in statistical mapping. Annals of the Association of American Geographers 53: 15–26. https://doi.org/10.1111/j.1467-8306.1963.tb00429.x
Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP (2021) ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution 12: 1602–1608. https://doi.org/10.1111/2041-210X.13628
Kass JM, Anderson RP, Espinosa-Lucas A, Juárez-Jaimes V, Martínez-Salas E, Botello F, Tavera G, Flores-Martínez JJ, Sánchez-Cordero V (2020) Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in Mexico. Ecography 43: 341–352. https://doi.org/10.1111/ecog.04886
Kawamichi T, Ueda H (1998) Spawning at nests of extra-large males in the giant salamander Andrias japonicus. Journal of Herpetology 32: 133–136. https://doi.org/10.2307/1565495
Klein N, Konietzko-Meier D, Kalita S, Noda M, Ishikawa S, Taguchi Y, Anzai W, Hayashi S (2024) Unique bone histology of modern giant salamanders: a study on humeri and femora of Andrias spp. Zoological Letters 10: 18. https://doi.org/10.1186/s40851-024-00240-1 Kobara J (1985) O-sansyo-uo [The Japanese Giant Salamander]. Dobutsu-sha, Tokyo, Japan [in Japanese].
Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, Eaton J, Marshall AJ, Semiadi G, Rustam R, Bernard H, Alfred R, Samejima H, Duckworth JW, Breitenmoser-Wuersten C, Belant JL, Hofer H, Wilting A (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19: 1366–1379. https://doi.org/10.1111/ddi.12096
Kuwabara K, Ashikaga K, Minamigata N, Nakanishi M, Shimada H, Kamada H, Fukumoto Y (2005) The breeding ecology and conservation of the Japanese giant salamander, Andrias japonicus, at Shijihara and Kamiishi in Toyohira-cho, Hiroshima Prefecture. Natural History of Nishi-Chugoku Mountains 10: 101–133.
Li Y, Cohen JM, Rohr JR (2013) Review and synthesis of the effects of climate change on amphibians. Integrative Zoology 8: 145–161. https://doi.org/10.1111/1749-4877.12001
Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy A, Aowphol A, Jean A, Sosa-Bartuano Á, Fong G. A, de Silva A, Fouquet A, Angulo A, Kidov AA, Muñoz Saravia A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B, Tjaturadi B, Martínez Rivera CC, Vásquez Almazán CR, Señaris C, Chandramouli SR, Strüssmann C, Cortez Fernández CF, Azat C, Hoskin CJ, Hilton-Taylor C, Whyte DL, Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ, Nagombi E, Najafi-Majd E, Quah ESH, Bolaños F, Xie F, Brusquetti F, Álvarez FS, Andreone F, Glaw F, Castañeda FE, Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán G, Ortega-Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailović J, Yang J-H, Jianping J, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO, Gururaja KV, Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH, Meegaskumbura M, Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yánez-Muñoz MH, Scherz MD, Rödel M-O, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M, Kouamé NG, García N, Gonwouo NL, Burrowes PA, Imbun PY, Wagner P, Kok PJR, Joglar RL, Auguste RJ, Brandão RA, Ibáñez R, von May R, Hedges SB, Biju SD, Ganesh SR, Wren S, Das S, Flechas SV, Ashpole SL, Robleto-Hernández SJ, Loader SP, Incháustegui SJ, Garg S, Phimmachak S, Richards SJ, Slimani T, Osborne-Naikatini T, Abreu-Jardim TPF, Condez TH, De Carvalho TR, Cutajar TP, Pierson TW, Nguyen TQ, Kaya U, Yuan Z, Long B, Langhammer P, Stuart SN (2023) Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622: 308–314. https://doi.org/10.1038/s41586-023-06578-4
Marr MM, Hopkins K, Tapley B, Borzée A, Liang Z, Cunningham AA, Yan F, Wang J, Turvey ST (2024) What’s in a name? Using species delimitation to inform conservation practice for Chinese giant salamanders (Andrias spp.). Evolutionary Journal of the Linnean Society 3: kzae007. https://doi.org/10.1093/evolinnean/kzae007
Matsui M, Tominaga A, Liu W, Tanaka-Ueno T (2008) Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata). Molecular Phylogenetics and Evolution 49: 318–326. https://doi.org/10.1016/j.ympev.2008.07.020
Mi C, Huettmann F, Li X, Jiang Z, Du W, Sun B (2022) Effects of climate and human activity on the current distribution of amphibians in China. Conservation Biology 36: e13964. https://doi.org/10.1111/cobi.13964
Mi C, Ma L, Yang M, Li X, Meiri S, Roll U, Oskyrko O, Pincheira-Donoso D, Harvey LP, Jablonski D, Safaei-Mahroo B, Ghaffari H, Smid J, Jarvie S, Kimani RM, Masroor R, Kazemi SM, Nneji LM, Fokoua AMT, Tasse Taboue GC, Bauer A, Nogueira C, Meirte D, Chapple DG, Das I, Grismer L, Avila LJ, Ribeiro Júnior MA, Tallowin OJS, Torres-Carvajal O, Wagner P, Ron SR, Wang Y, Itescu Y, Nagy ZT, Wilcove DS, Liu X, Du W (2023) Global protected areas as refuges for amphibians and reptiles under climate change. Nature Communications 14: 1389. https://doi.org/10.1038/s41467-023-36987-y
Muluneh MG (2021) Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture & Food Security 10: 1–25. https://doi.org/10.1186/s40066-021-00318-5
Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 1198–1205. https://doi.org/10.1111/2041-210X.12261
Neto JGDS, Sutton WB, Spear SF, Freake MJ, Kéry M, Schmidt BR (2020) Integrating species distribution and occupancy modeling to study hellbender (Cryptobranchus alleganiensis) occurrence based on eDNA surveys. Biological Conservation 251: 108787. https://doi.org/10.1016/j.biocon.2020.108787
Nickerson MA, Amber LP, Michelle DP (2007) The effects of flooding on Hellbender salamander, Cryptobranchus alleganiensis Daudin, 1803, populations. Salamandra 43: 111–118.
Okada S, Fukuda Y, Takahashi MK (2015) Paternal care behaviors of Japanese giant salamander Andrias japonicus in natural populations. Journal of Ethology 33: 1–7. https://doi.org/10.1007/s10164-014-0413-5
Okada S, Utsunomiya T, Okada T, Felix ZI, Ito F (2008) Characteristics of Japanese giant salamander (Andrias japonicus) populations in two small tributary streams in Hiroshima prefecture, western Honshu, Japan. Herpetological Conservation and Biology 3: 192–202.
Pan Y, Wei G, Cunningham AA, Li S, Chen S, Milner-Gulland EJ, Turvey ST (2016) Using local ecological knowledge to assess the status of the Critically Endangered Chinese giant salamander Andrias davidianus in Guizhou Province, China. Oryx 50: 257–264. https://doi.org/10.1017/S0030605314000830
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, 328 pp. https://doi.org/10.1515/9781400840670
Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40: 887–893. https://doi.org/10.1111/ecog.03049
Pitt AL, Shinskie JL, Tavano JJ, Hartzell SM, Delahunty T, Spear SF (2017) Decline of a giant salamander assessed with historical records, environmental DNA and multi-scale habitat data. Freshwater Biology 62: 967–976. https://doi.org/10.1111/fwb.12917
Pugh MW, Hutchins M, Madritch M, Siefferman L, Gangloff MM (2016) Land-use and local physical and chemical habitat parameters predict site occupancy by hellbender salamanders. Hydrobiologia 770: 105–116. https://doi.org/10.1007/s10750-015-2570-0
Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41: 629–643. https://doi.org/10.1111/jbi.12227
Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography 30: 727–736. https://doi.org/10.1111/j.2007.0906-7590.05041.x
Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40: 913–929. https://doi.org/10.1111/ecog.02881
Schivo F, Bauni V, Krug P, Quintana RD (2019) Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Applied Geography 103: 70–89. https://doi.org/10.1016/j.apgeog.2019.01.003
Seaborn T, Goldberg CS, Crespi EJ (2021) Drivers of distributions and niches of North American cold-adapted amphibians: evaluating both climate and land use. Ecological Applications 31: e2236. https://doi.org/10.1002/eap.2236
Sergio F, Newton I, Marchesi L, Pedrini P (2006) Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology 43: 1049–1055. https://doi.org/10.1111/j.1365-2664.2006.01218.x
Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annual Review of Ecology, Evolution, and Systematics 39: 1–19. https://doi.org/10.1146/annurev.ecolsys.39.110707.173545
Shakti PC, Hirano K, Iizuka S (2020) Flood inundation mapping of the Hitachi region in the Kuji River Basin, Japan, during the October 11–13, 2019 extreme rain event. Journal of Disaster Research 15: 712–725. https://doi.org/10.20965/jdr.2020.p0712
Shikama T, Hasegawa Y (1962) Discovery of the fossil giant salamander (Megalobatrachus) in Japan. Transactions and Proceedings of the Palaeontological Society of Japan 45: 197–200.
Sillero N, Barbosa AM (2021) Common mistakes in ecological niche models. International Journal of Geographical Information Science 35: 213–226. https://doi.org/10.1080/13658816.2020.1798968
Sillero N, Arenas-Castro S, Enriquez‐Urzelai U, Vale CG, Sousa-Guedes D, Martínez-Freiría F, Real R, Barbosa AM (2021) Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling 456: 109671. https://doi.org/10.1016/j.ecolmodel.2021.109671
Soley-Guardia M, Alvarado-Serrano DF, Anderson RP (2024) Top ten hazards to avoid when modeling species distributions: a didactic guide of assumptions, problems, and recommendations. Ecography 2024: e06852. https://doi.org/10.1111/ecog.06852
Souza KS, Fortunato DS, Jardim L, Terribile LC, Lima-Ribeiro MS, Mariano CÁ, Pinto-Ledezma JN, Loyola R, Dobrovolski R, Rangel TF, Machado IF, Rocha T, Batista MG, Lorini ML, Vale MM, Navas CA, Maciel NM, Villalobos F, Olalla-Tarraga MÂ, Rodrigues JFM, Gouveia SF, Diniz-Filho JAF (2023) Evolutionary rescue and geographic range shifts under climate change for global amphibians. Frontiers in Ecology and Evolution 11: 1038018. https://doi.org/10.3389/fevo.2023.1038018
Sutton WB, Grisnik M, Williams LA, Groves JD (2023) Climatic and landscape vulnerability of the eastern Hellbender salamander (Cryptobranchus alleganiensis alleganiensis). Global Ecology and Conservation 46: e02554. https://doi.org/10.1016/j.gecco.2023.e02554 Taguchi Y (2009) Seasonal movements of the Japanese giant salamander (Andrias japonicus): Evidence for possible breeding migration by this stream-dwelling amphibian. Japanese Journal of Ecology 59: 117–128.
Taguchi Y, Natuhara Y (2009) Requirements for small agricultural dams to allow the Japanese giant salamander (Andrias japonicus) to move upstream. Japanese Journal of Conservation Ecology 14: 165–172.
Takabatake D, Inatsu M (2022) Summertime precipitation in Hokkaido and Kyushu, Japan in response to global warming. Climate Dynamics 58: 1671–1682. https://doi.org/10.1007/s00382-021-05983-7
Takahashi MK, Okada S, Fukuda Y (2017) From embryos to larvae: seven-month-long paternal care by male Japanese giant salamander. Journal of Zoology 302: 24–31. https://doi.org/10.1111/jzo.12433
Takahashi Y, Rashid MH, Sarkar A, Asaeda T, Isono M, Omura T, Koga K (2016) Use of ladderways in fragmented habitat to aid the movement of Japanese giant salamander (Andrias japonicus). International Journal of River Basin Management 14: 233–241. https://doi.org/10.1080/15715124.2016.1159572
Terrell KA, Quintero RP, Murray S, Kleopfer JD, Murphy JB, Evans MJ, Nissen BD, Gratwicke B (2013) Cryptic impacts of temperature variability on amphibian immune function. Journal of Experimental Biology 216: 4204–4211. https://doi.org/10.1242/jeb.089896
Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411: 577–581. https://doi.org/10.1038/35079066
Tochimoto T (1995) Ecological studies on the Japanese giant salamander, Andrias japonicus, in the Ichi River in Hyogo Prefecture. 10. An attempt to rebuild spawning places along the river. Journal of the Japanese Association of Zoos and Aquaria 37: 13–17.
Tochimoto T, Taguchi Y, Onuma H, Kawakami N, Shimizu K, Doi T, Kakinoki S, Natuhara Y, Mitsuhashi H (2007) Distribution of Japanese giant salamander in Hyogo Prefecture, western Japan. Humans and Nature 18: 51–65.
Turvey ST, Chen S, Tapley B, Wei G, Xie F, Yan F, Yang J, Liang Z, Tian H, Wu M, Okada S, Wang J, Lü J, Zhou F, Papworth SK, Redbond J, Brown T, Che J, Cunningham AA (2018) Imminent extinction in the wild of the world’s largest amphibian. Current Biology 28: R592–R594. https://doi.org/10.1016/j.cub.2018.04.005
Ultsch GR (2012) Metabolism, gas exchange, and acid-base balance of giant salamanders. Biological Reviews 87: 583–601. https://doi.org/10.1111/j.1469-185X.2011.00211.x
VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling 220: 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010
Walls SC, Barichivich WJ, Brown ME (2013) Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate. Biology 2: 399–418. https://doi.org/10.3390/biology2010399
Werkowska W, Márquez AL, Real R, Acevedo P (2017) A practical overview of transferability in species distribution modeling. Environmental Reviews 25: 127–133. https://doi.org/10.1139/er-2016-0045
Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF, Parnell S, Fielding AH, Bamford AJ, Ban S, Barbosa AM, Dormann CF, Elith J, Embling CB, Ervin GN, Fisher R, Gould S, Graf RF, Gregr EJ, Halpin PN, Heikkinen RK, Heinänen S, Jones AR, Krishnakumar PK, Lauria V, Lozano-Montes H, Mannocci L, Mellin C, Mesgaran MB, Moreno-Amat E, Mormede S, Novaczek E, Oppel S, Ortuño Crespo G, Peterson AT, Rapacciuolo G, Roberts JJ, Ross RE, Scales KL, Schoeman D, Snelgrove P, Sundblad G, Thuiller W, Torres LG, Verbruggen H, Wang L, Wenger S, Whittingham MJ, Zharikov Y, Zurell D, Sequeira AMM (2018) Outstanding challenges in the transferability of ecological models. Trends in Ecology & Evolution 33: 790–802. https://doi.org/10.1016/j.tree.2018.08.001
Zellmer AJ, Slezak P, Katz TS (2020) Clearing up the crystal ball: Understanding uncertainty in future climate suitability projections for amphibians. Herpetologica 76: 108–120. https://doi.org/10.1655/0018-0831-76.2.108
Zhang Z, Mammola S, Liang Z, Capinha C, Wei Q, Wu Y, Zhou J, Wang C (2020) Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology 65: 971–980. https://doi.org/10.1111/fwb.13483
Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology 18: 1042–1052. https://doi.org/10.1111/j.1365-2486.2011.02571.x
Zurell D, Franklin J, König C, Bouchet PJ, Dormann CF, Elith J, Fandos G, Feng X, Guillera-Arroita G, Guisan A, Lahoz-Monfort JJ, Leitão PJ, Park DS, Peterson AT, Rapacciuolo G, Schmatz DR, Schröder B, Serra-Diaz JM, Thuiller W, Yates KL, Zimmermann NE, Merow C (2020) A standard protocol for reporting species distribution models. Ecography 43: 1261–1277. https://doi.org/10.1111/ecog.04960