[en] Background: Metabolite profiling of blood by nuclear magnetic resonance (NMR) is invaluable to clinical biomarker discovery. To ensure robustness, biomarkers require validation in large cohorts and across multiple centres. However, collection procedures are known to impact on the stability of biofluids that may, in turn, degrade biomarker signals. We trialled three blood collection tubes with the aim of solving technical challenges due to preanalytical variation in blood metabolite levels that are common in cohort studies. Methods: We first investigated global NMR-based metabolite variability between biobanks, including the large-scale UK Biobank and TwinsUK biobank of the general UK population, and more targeted biobanks derived from multicentre clinical trials relating to inflammatory bowel disease. We then compared the blood metabolome of 12 healthy adult volunteers when collected into either sodium fluoride/potassium oxalate, lithium heparin, or serum blood tubes using different pre-processing parameters. Results: Preanalytical variation in the method of blood collection strongly influences metabolite composition within and between biobanks. This variability can largely be attributed to glucose and lactate. In the healthy control cohort, the fluoride oxalate collection tube prevented fluctuation in glucose and lactate levels for 24 hours at either 4 °C or room temperature (20 °C). Conclusions: Blood collection into a fluoride oxalate collection tube appears to preserve the blood metabolome with delayed processing up to 24 hours at 4 °C. This method may be considered as an alternative when rapid processing is not feasible.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Xiong, Wenzheng ; Department of Chemistry, University of Oxford, Oxford, UK. daniel.radford-smith@some.ox.ac.uk. ; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
Anthony, Daniel C; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
Anthony, Suzie; Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
Ho, Thi Bao Tien ; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
Louis, Edouard ; Université de Liège - ULiège > Département des sciences cliniques > Hépato-gastroentérologie
Satsangi, Jack; Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK.
Radford-Smith, Daniel E ; Department of Chemistry, University of Oxford, Oxford, UK. daniel.radford-smith@some.ox.ac.uk. ; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
Language :
English
Title :
Sodium fluoride preserves blood metabolite integrity for biomarker discovery in large-scale, multi-site metabolomics investigations.
Wishart D. S. Emerging applications of metabolomics in drug discovery and precision medicine Nat. Rev. Drug Discovery 2016 15 7 473 484 10.1038/nrd.2016.32 26965202
Beckonert O. Keun H. C. Ebbels T. M. D. et al., Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts Nat. Protoc. 2007 2 11 2692 2703 10.1038/nprot.2007.376 18007604
Buergel T. Steinfeldt J. Ruyoga G. et al., Metabolomic profiles predict individual multidisease outcomes Nat. Med. 2022 28 11 2309 2320 10.1038/s41591-022-01980-3 36138150
Julkunen H. Cichonska A. Tiainen M. et al., Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank Nat. Commun. 2023 14 1 604 10.1038/s41467-023-36231-7
Radford-Smith D. E. Selvaraj E. A. Peters R. et al., A novel serum metabolomic panel distinguishes IgG4-related sclerosing cholangitis from primary sclerosing cholangitis Liver Int. 2022 42 6 1344 1354 10.1111/liv.15192 35129255
Probert F. Walsh A. Jagielowicz M. et al., Plasma Nuclear Magnetic Resonance Metabolomics Discriminates Between High and Low Endoscopic Activity and Predicts Progression in a Prospective Cohort of Patients With Ulcerative Colitis J. Crohns Colitis 2018 12 11 1326 1337 10.1093/ecco-jcc/jjy101
Caspani G. Turecki G. Lam R. W. et al., Metabolomic signatures associated with depression and predictors of antidepressant response in humans: A CAN-BIND-1 report Commun. Biol. 2021 4 1 903 10.1038/s42003-021-02421-6 34294869
Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry Anal. Bioanal. Chem. 2012 403 6 1523 1548 10.1007/s00216-012-6039-y 22576654
Jacob M. Lopata A. L. Dasouki M. Abdel Rahman AM. Metabolomics toward personalized medicine Mass Spectrom. Rev. 2019 38 3 221 238 10.1002/mas.21548 29073341
Jobard E. Trédan O. Postoly D. et al., A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies Int. J. Mol. Sci. 2016 17 12 2035 10.3390/ijms17122035 27929400
Yin P. Peter A. Franken H. et al., Preanalytical aspects and sample quality assessment in metabolomics studies of human blood Clin. Chem. 2013 59 5 833 845 10.1373/clinchem.2012.199257
Santos Ferreira D. L. Maple H. J. Goodwin M. et al., The Effect of Pre-Analytical Conditions on Blood Metabolomics in Epidemiological Studies Metabolites 2019 9 4 64 10.3390/metabo9040064 30987180
Alexander J. L. Wyatt N. J. Camuzeaux S. et al., Considerations for peripheral blood transport and storage during large-scale multicentre metabolome research Gut 2024 73 379 383, [cited 2023 May 23]; available from: https://gut.bmj.com/content/early/2023/02/07/gutjnl-2022-329297
Pinto J. Domingues M. R. M. Galhano E. et al., Human plasma stability during handling and storage: impact on NMR metabolomics Analyst 2014 139 5 1168 1177 10.1039/C3AN02188B
Sotelo-Orozco J. Chen S.-Y. Hertz-Picciotto I. Slupsky C. M. A Comparison of Serum and Plasma Blood Collection Tubes for the Integration of Epidemiological and Metabolomics Data Front. Mol. Biosci. 2021 8 682134 10.3389/fmolb.2021.682134 34307452, [cited 2023 May 24]. Available from: https://www.frontiersin.org/articles/10.3389/fmolb.2021.682134
Vignoli A. Tenori L. Morsiani C. Turano P. Capri M. Luchinat C. Serum or Plasma (and Which Plasma), That Is the Question J. Proteome Res. 2022 21 4 1061 1072 10.1021/acs.jproteome.1c00935 35271285
Muti I. H. Gonzalez Sanchez-Dahl M. Zhong A. B. et al., Designing a quality assurance process for quality control of nuclear magnetic resonance metabolomics studies of human blood NMR Biomed. 2023 36 4 e4868 10.1002/nbm.4868 36330660
Fliniaux O. Gaillard G. Lion A. Cailleu D. Mesnard F. Betsou F. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks J. Biomol. NMR. 2011 51 4 457 465 10.1007/s10858-011-9574-5 21964699
Ellervik C. Vaught J. Preanalytical variables affecting the integrity of human biospecimens in biobanking Clin. Chem. 2015 61 7 914 934 10.1373/clinchem.2014.228783 25979952
Anton G. Wilson R. Yu Z. et al., Pre-Analytical Sample Quality: Metabolite Ratios as an Intrinsic Marker for Prolonged Room Temperature Exposure of Serum Samples PLoS One 2015 10 3 e0121495 10.1371/journal.pone.0121495 25823017
Debik J. Isaksen S. H. Strømmen M. et al., Effect of Delayed Centrifugation on the Levels of NMR-Measured Lipoproteins and Metabolites in Plasma and Serum Samples Anal. Chem. 2022 94 49 17003 17010 10.1021/acs.analchem.2c02167 36454175
Fomenko M. V. Yanshole L. V. Tsentalovich Y. P. Stability of Metabolomic Content during Sample Preparation: Blood and Brain Tissues Metabolites 2022 12 9 811 10.3390/metabo12090811 36144215
Bernini P. Bertini I. Luchinat C. Nincheri P. Staderini S. Turano P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks J. Biomol. NMR. 2011 49 3-4 231 243 10.1007/s10858-011-9489-1 21380509
Brunius C. Pedersen A. Malmodin D. et al., Prediction and modeling of pre-analytical sampling errors as a strategy to improve plasma NMR metabolomics data Bioinformatics 2017 33 22 3567 3574 10.1093/bioinformatics/btx442 29036400
McClain K. M. Moore S. C. Sampson J. N. et al., Preanalytical Sample Handling Conditions and Their Effects on the Human Serum Metabolome in Epidemiologic Studies Am. J. Epidemiol. 2021 190 3 459 467 10.1093/aje/kwaa202 32959873
Peakman T. C. Elliott P. The UK Biobank sample handling and storage validation studies Int. J. Epidemiol. 2008 37 suppl_1 i2 i6 10.1093/ije/dyn019 18381389
Barrios C. Zierer J. Würtz P. et al., Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations Sci. Rep. 2018 8 1 15249 10.1038/s41598-018-33507-7 30323304
Allen N. E. Arnold M. Parish S. et al., Approaches to minimising the epidemiological impact of sources of systematic and random variation that may affect biochemistry assay data in UK Biobank Wellcome Open Res. 2021 5 222
Moayyeri A., Hammond C. J., Hart D. J. and Spector T. D., The UK Adult Twin Registry (TwinsUK Resource), in Twin Research and Human Genetics, Cambridge University Press, 2013, vol. 16( 1), pp. 144-149
Yu Z. Zhai G. Singmann P. et al., Human serum metabolic profiles are age dependent Aging Cell 2012 11 6 960 967 10.1111/j.1474-9726.2012.00865.x 22834969
Louis E. Mary J.-Y. Vernier-Massouille G. et al., Maintenance of remission among patients with Crohn's disease on antimetabolite therapy after infliximab therapy is stopped Gastroenterology 2012 142 1 63 70 10.1053/j.gastro.2011.09.034 21945953 . e5; quiz e31
Louis E. Resche-Rigon M. Laharie D. et al., Withdrawal of infliximab or concomitant immunosuppressant therapy in patients with Crohn's disease on combination therapy (SPARE): a multicentre, open-label, randomised controlled trial Lancet Gastroenterol. Hepatol. 2023 8 3 215 227 10.1016/S2468-1253(22)00385-5 36640794
Cacciatore S. Tenori L. Luchinat C. Bennett P. R. MacIntyre D. A. KODAMA: an R package for knowledge discovery and data mining Bioinformatics 2017 33 4 621 623 10.1093/bioinformatics/btw705 27993774
Thévenot E. A. Roux A. Xu Y. Ezan E. Junot C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses J. Proteome Res. 2015 14 8 3322 3335 10.1021/acs.jproteome.5b00354
Singmann H., Bolker B., Westfall J., Aust F. and Ben-Shachar M. S., afex: Analysis of factorial experiments. R package version 013-145. 2015
Larkin J. R. Anthony S. Johanssen V. A. et al., Metabolomic Biomarkers in Blood Samples Identify Cancers in a Mixed Population of Patients with Nonspecific Symptoms Clin. Cancer Res. 2022 28 8 1651 1661 10.1158/1078-0432.CCR-21-2855 34983789
Goldberg E. Ievari-Shariati S. Kidane B. et al., Comparative metabolomics studies of blood collected in streck and heparin tubes from lung cancer patients PLoS One 2021 16 4 e0249648 10.1371/journal.pone.0249648 33891605
Foucher C. D. and Tubben R. E. Lactic Acidosis, in Lactic Acidosis [Updated 2022 Jul 18], StatPearls Publishing, Treasure Island (FL), Available from: https://www.ncbi.nlm.nih.gov/books/NBK470202/
Gambino R. Sodium fluoride: an ineffective inhibitor of glycolysis Ann. Clin. Biochem. 2013 50 Pt 1 3 5 10.1258/acb.2012.012135 23129725
Cruickshank-Quinn C. Zheng L. K. Quinn K. Bowler R. Reisdorph R. Reisdorph N. Impact of Blood Collection Tubes and Sample Handling Time on Serum and Plasma Metabolome and Lipidome Metabolites 2018 8 4 88 10.3390/metabo8040088 30518126
Barton R. H. Nicholson J. K. Elliott P. Holmes E. High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study Int. J. Epidemiol. 2008 37 suppl_1 i31 i40 10.1093/ije/dym284 18381391
Ritchie S. C. Surendran P. Karthikeyan S. et al., Quality control and removal of technical variation of NMR metabolic biomarker data in ~120,000 UK Biobank participants Sci. Data 2023 10 1 64 10.1038/s41597-023-01949-y 36720882
Downey P. Peakman T. C. Design and implementation of a high-throughput biological sample processing facility using modern manufacturing principles Int. J. Epidemiol. 2008 37 suppl_1 i46 i50 10.1093/ije/dyn031
Nagana Gowda G. A. Pascua V. Raftery D. Anomalous Dynamics of Labile Metabolites in Cold Human Blood Detected Using 1H NMR Spectroscopy Anal. Chem. 2023 95 34 12923 12930 10.1021/acs.analchem.3c02478 37582233
Waring W. S. Evans L. E. Kirkpatrick C. T. Glycolysis inhibitors negatively bias blood glucose measurements: potential impact on the reported prevalence of diabetes mellitus J. Clin. Pathol. 2007 60 7 820 823 10.1136/jcp.2006.039925
Lippi G., Nybo M., Cadamuro J., Guimaraes J. T., van Dongen-Lases E. and Simundic A.-M., Chapter Four - Blood Glucose Determination: Effect of Tube Additives, in Advances in Clinical Chemistry, ed. G. S. Makowski, Elsevier, 2018. pp. 101-123 [cited 2023 May 24]. Available from: https://www.sciencedirect.com/science/article/pii/S0065242317300689
Elferink J. G. The mechanism of calcium oxalate crystal-induced haemolysis of human erythrocytes Br. J. Exp. Pathol. 1987 68 4 551 557
Haug K. Cochrane K. Nainala V. C. et al., MetaboLights: a resource evolving in response to the needs of its scientific community Nucleic Acids Res. 2020 48 D1 D440 D444