[en] The tetraploid genome and clonal propagation of the cultivated potato (Solanum tuberosum L.)1,2 dictate a slow, non-accumulative breeding mode of the most important tuber crop. Transitioning potato breeding to a seed-propagated hybrid system based on diploid inbred lines has the potential to greatly accelerate its improvement3. Crucially, the development of inbred lines is impeded by manifold deleterious variants; explaining their nature and finding ways to eliminate them is the current focus of hybrid potato research4-10. However, most published diploid potato genomes are unphased, concealing crucial information on haplotype diversity and heterozygosity11-13. Here we develop a phased potato pangenome graph of 60 haplotypes from cultivated diploids and the ancestral wild species, and find evidence for the prevalence of transposable elements in generating structural variants. Compared with the linear reference, the graph pangenome represents a broader diversity (3,076 Mb versus 742 Mb). Notably, we observe enhanced heterozygosity in cultivated diploids compared with wild ones (14.0% versus 9.5%), indicating extensive hybridization during potato domestication. Using conservative criteria, we identify 19,625 putatively deleterious structural variants (dSVs) and reveal a biased accumulation of deleterious single nucleotide polymorphisms (dSNPs) around dSVs in coupling phase. Based on the graph pangenome, we computationally design ideal potato haplotypes with minimal dSNPs and dSVs. These advances provide critical insights into the genomic basis of clonal propagation and will guide breeders to develop a suite of promising inbred lines.
Disciplines :
Agriculture & agronomy
Author, co-author :
Cheng, Lin ; Université de Liège - ULiège > TERRA Research Centre ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Wang, Nan; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ; National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
Bao, Zhigui ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
Zhou, Qian; School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, China
Guarracino, Andrea ; Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
Yang, Yuting; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Wang, Pei; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Zhang, Zhiyang ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Tang, Dié; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
Zhang, Pingxian ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Wu, Yaoyao; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ; College of Horticulture, Nanjing Agricultural University, Nanjing, China
Zhou, Yao ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
Zheng, Yi; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Hu, Yong; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Lian, Qun; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Ma, Zhaoxu ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Zhang, Chunzhi ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Lucas, William J; Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, USA
Garrison, Erik ; Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
Stein, Nils ; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany ; Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
Städler, Thomas; Institute of Integrative Biology and Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
Zhou, Yongfeng ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ; National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
Huang, Sanwen ; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. huangsanwen@caas.cn ; National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China. huangsanwen@caas.cn
E. Stokstad The new potato Science 363 574 577 2019Sci..363.574S 30733400 10.1126/science.363.6427.574 1:CAS:528:DC%2BC1MXhsVOhurbL 0078.38401
D.M. Spooner M. Ghislain R. Simon S.H. Jansky T. Gavrilenko Systematics, diversity, genetics, and evolution of wild and cultivated potatoes Bot. Rev. 80 283 383 10.1007/s12229-014-9146-y
C. Zhang et al. Genome design of hybrid potato Cell 184 3873 3883 34171306 10.1016/j.cell.2021.06.006 1:CAS:528:DC%2BB3MXhsVWhtbjO 1395.90053
The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato Nature 475 189 195 10.1038/nature10158
Q. Zhou et al. Haplotype-resolved genome analyses of a heterozygous diploid potato Nat. Genet. 52 1018 1023 32989320 7527274 10.1038/s41588-020-0699-x 1:CAS:528:DC%2BB3cXhvFegurvO 1498.20023
Q. Lian et al. Acquisition of deleterious mutations during potato polyploidization J. Integr. Plant Biol. 61 7 11 30474354 10.1111/jipb.12748 1:CAS:528:DC%2BC1MXhsFynt74%3D 1449.30055
Z. Bao et al. Genome architecture and tetrasomic inheritance of autotetraploid potato Mol. Plant 15 1211 1226 35733345 10.1016/j.molp.2022.06.009 1:CAS:528:DC%2BB38Xhs1SmtL%2FN 1049.65012
S.H. Jansky et al. Reinventing potato as a diploid inbred line-based crop Crop Sci. 56 1412 1422 10.2135/cropsci2015.12.0740 1:CAS:528:DC%2BC2sXns1ens7w%3D 1473.39029
C. Zhang et al. The genetic basis of inbreeding depression in potato Nat. Genet. 51 374 378 30643248 10.1038/s41588-018-0319-1 1:CAS:528:DC%2BC1MXlvFSgtbk%3D 1508.91325
Y. Wu et al. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding Cell 186 2313 2328.e15 37146612 10.1016/j.cell.2023.04.008 1:CAS:528:DC%2BB3sXptlWnt7c%3D 1151.90596
N. van Lieshout et al. Solyntus, the new highly contiguous reference genome for potato (Solanum tuberosum) G3 10 3489 3495 32759330 7534448 10.1534/g3.120.401550 07530995
R. Freire et al. Chromosome-scale reference genome assembly of a diploid potato clone derived from an elite variety G3 11 34534288 8664475 10.1093/g3journal/jkab330 1:CAS:528:DC%2BB38XhvVOlu73K 1487.37085 jkab330
D. Tang et al. Genome evolution and diversity of wild and cultivated potatoes Nature 606 535 541 2022Natur.606.535T 35676481 9200641 10.1038/s41586-022-04822-x 1:CAS:528:DC%2BB38XhsFWhu7bN 1505.01051
H. Sun et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar Nat. Genet. 54 342 348 35241824 8920897 10.1038/s41588-022-01015-0 1:CAS:528:DC%2BB38XmtVehsbc%3D 1224.05425
M. Ye et al. Generation of self-compatible diploid potato by knockout of S-RNase Nat. Plants 4 651 654 30104651 10.1038/s41477-018-0218-6 1:CAS:528:DC%2BC1cXhsFSqtb%2FM 1447.93220
S. Chun J.C. Fay Identification of deleterious mutations within three human genomes Genome Res. 19 1553 1561 19602639 2752137 10.1101/gr.092619.109 1:CAS:528:DC%2BD1MXhtFCjsLrJ 0806.41019
C.D. Marsden et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs Proc. Natl Acad. Sci. USA 113 152 157 2016PNAS.113.152M 26699508 10.1073/pnas.1512501113 1:CAS:528:DC%2BC2MXitVylsr%2FJ 1375.00077
Q. Liu Y. Zhou P.L. Morrell B.S. Gaut Deleterious variants in Asian rice and the potential cost of domestication Mol. Biol. Evol. 34 908 924 28087781 1:CAS:528:DC%2BC1cXhvV2ms7nP 1364.93647
X. Zhang et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis Nat. Genet. 53 1250 1259 34267370 8346365 10.1038/s41588-021-00895-y 1:CAS:528:DC%2BB3MXhsFOntLnJ 1098.68053
E.D. Jarvis et al. Semi-automated assembly of high-quality diploid human reference genomes Nature 611 519 531 2022Natur.611.519J 36261518 9668749 10.1038/s41586-022-05325-5 1:CAS:528:DC%2BB38Xis1Onu7zO 0893.53011
M. Schreiber M. Jayakodi N. Stein M. Mascher Plant pangenomes for crop improvement, biodiversity and evolution Nat. Rev. Genet. 25 563 577 38378816 7616794 10.1038/s41576-024-00691-4 1:CAS:528:DC%2BB2cXktVyjsLo%3D
M.A. Hardigan et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato Proc. Natl Acad. Sci. USA 114 E9999 E10008 29087343 5699086 10.1073/pnas.1714380114 1:CAS:528:DC%2BC2sXhslemsrzL
F.A. Simão R.M. Waterhouse P. Ioannidis E.V. Kriventseva E.M. Zdobnov BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs Bioinformatics 31 3210 3212 26059717 10.1093/bioinformatics/btv351
W.-W. Liao et al. A draft human pangenome reference Nature 617 312 324 2023Natur.617.312L 37165242 10172123 10.1038/s41586-023-05896-x 1:CAS:528:DC%2BB3sXpvVansLk%3D 1261.20079
G.M. Pham et al. Construction of a chromosome-scale long-read reference genome assembly for potato GigaScience 9 32964225 7509475 10.1093/gigascience/giaa100 giaa100
E. Garrison et al. Building pangenome graphs Nat. Methods 21 2008 2012 39433878 10.1038/s41592-024-02430-3 1:CAS:528:DC%2BB2cXitlant77L 1149.90392
G. Hickey et al. Pangenome graph construction from genome alignments with Minigraph-Cactus Nat. Biotechnol. 42 663 673 37165083 10.1038/s41587-023-01793-w 1:CAS:528:DC%2BB3sXpvVaisbk%3D 1105.68020
E. Garrison A. Guarracino Unbiased pangenome graphs Bioinformatics 39 btac743 36448683 10.1093/bioinformatics/btac743 1:CAS:528:DC%2BB3sXhsFKis77F 1536.05184
Z. Gong et al. Repeatless and repeat-based centromeres in potato: implications for centromere evolution Plant Cell 24 3559 3574 22968715 3480287 10.1105/tpc.112.100511 1:CAS:528:DC%2BC38Xhs1ygs7nM 1373.94250
I. Bozan et al. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species Proc. Natl Acad. Sci. USA 120 2023PNAS.12017119B 37487084 10401005 10.1073/pnas.2211117120 1:CAS:528:DC%2BB3sXhvVCksLrP 1330.70050 e2211117120
M. Domínguez et al. The impact of transposable elements on tomato diversity Nat. Commun. 11 2020NatCo.11.4058D 32792480 7426864 10.1038/s41467-020-17874-2 1437.35616 4058
T. Wicker et al. A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv‐eIF4E locus: recombination, rearrangements and repeats Plant J. 41 184 194 15634196 10.1111/j.1365-313X.2004.02285.x 1:CAS:528:DC%2BD2MXhtVWitrY%3D
P. Balachandran et al. Transposable element-mediated rearrangements are prevalent in human genomes Nat. Commun. 13 2022NatCo.13.7115B 36402840 9675761 10.1038/s41467-022-34810-8 1:CAS:528:DC%2BB38XivFOms77L 1408.76550 7115
Z. Fang et al. Megabase-scale inversion polymorphism in the wild ancestor of maize Genetics 191 883 894 22542971 3389981 10.1534/genetics.112.138578 1282.94021
E.L. Berdan A. Blanckaert R.K. Butlin C. Bank Deleterious mutation accumulation and the long-term fate of chromosomal inversions PLoS Genet. 17 e1009411 33661924 7963061 10.1371/journal.pgen.1009411 1:CAS:528:DC%2BB3MXmvFanu7s%3D
Y. Zhou et al. The population genetics of structural variants in grapevine domestication Nat. Plants 5 965 979 31506640 10.1038/s41477-019-0507-8 0961.35084
E. Roumeliotis B. Kloosterman M. Oortwijn R.G. Visser C.W. Bachem The PIN family of proteins in potato and their putative role in tuberization Front. Plant Sci. 4 524 24391658 3867687 10.3389/fpls.2013.00524
S.K. Cho et al. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA J. Exp. Bot. 66 6835 6847 26283046 4623692 10.1093/jxb/erv389 1:CAS:528:DC%2BC28XpvFGlurs%3D 1425.92223
B. Wang et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis Nat. Genet. 55 312 323 36646891 10.1038/s41588-022-01283-w 1:CAS:528:DC%2BB3sXhslKhtrY%3D 1519.05148
H. Xiao et al. Adaptive and maladaptive introgression in grapevine domestication Proc. Natl Acad. Sci. USA 120 e2222041120 37276420 10268302 10.1073/pnas.2222041120 1:CAS:528:DC%2BB3sXhsVWhtrvF
P.C. Bethke et al. Diploid potatoes as a catalyst for change in the potato industry Am. J. Potato Res. 99 337 357 10.1007/s12230-022-09888-x 1196.81230
S. Mezmouk J. Ross-Ibarra The pattern and distribution of deleterious mutations in maize G3 4 163 171 24281428 10.1534/g3.113.008870
Y. Li et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants Nat. Genet. 42 969 972 20890277 10.1038/ng.680 1:CAS:528:DC%2BC3cXht1elu7rP 1205.81048
N. Wang et al. Structural variation and parallel evolution of apomixis in citrus during domestication and diversification Natl Sci. Rev. 9 nwac114 36415319 9671666 10.1093/nsr/nwac114 1:CAS:528:DC%2BB3sXnsFCjs70%3D
B.E. Harcourt Reflecting on the subject: a critique of the social influence conception of deterrence, the broken windows theory, and order-maintenance policing New York style Mich. Law Rev. 97 291 10.2307/1290289 26.0086.05
A.P. Morgan et al. Structural variation shapes the landscape of recombination in mouse Genetics 206 603 619 28592499 5499175 10.1534/genetics.116.197988 1:CAS:528:DC%2BC1cXhvVOltr3M 0063.08178
D. Porubsky et al. Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders Cell 185 1986 2005 35525246 9563103 10.1016/j.cell.2022.04.017 1:CAS:528:DC%2BB38Xht1ant7rM 1530.01015
B.A. Rowan et al. An ultra high-density Arabidopsis thaliana crossover map that refines the influences of structural variation and epigenetic features Genetics 213 771 787 31527048 6827372 10.1534/genetics.119.302406 1:CAS:528:DC%2BB3cXovVWru7s%3D 1437.35144
P. Ramu et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation Nat. Genet. 49 959 963 28416819 10.1038/ng.3845 1:CAS:528:DC%2BC2sXmtFGhtL4%3D 0507.90004
Y. Jiao et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice Nat. Genet. 42 541 544 20495565 10.1038/ng.591 1:CAS:528:DC%2BC3cXmsVWntbY%3D 1231.34019
X. Jiang et al. Genomic features of meiotic crossovers in diploid potato Hortic. Res. 10 uhad079 37323232 10261879 10.1093/hr/uhad079 1:CAS:528:DC%2BB2cXhsVyntrzL
B.J. Hayes et al. Potential approaches to create ultimate genotypes in crops and livestock Nat. Genet. 56 2310 2317 39402155 10.1038/s41588-024-01942-0 1:CAS:528:DC%2BB2cXit1altLvM 07920254
S. Filler-Hayut K. Kniazev C. Melamed-Bessudo A.A. Levy Targeted inter-homologs recombination in Arabidopsis euchromatin and heterochromatin Int. J. Mol. Sci. 22 12096 34829981 8622013 10.3390/ijms222212096 1:CAS:528:DC%2BB3MXis1Cisb%2FJ
C. Schmidt P. Schindele H. Puchta From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas Abiotech 1 21 31 36305002 10.1007/s42994-019-00002-0
G. Rakocevic et al. Fast and accurate genomic analyses using genome graphs Nat. Genet. 51 354 362 30643257 10.1038/s41588-018-0316-4 1:CAS:528:DC%2BC1MXlvFSgtLo%3D 1079.46517
M. Alonge et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato Cell 182 145 161. e23 32553272 7354227 10.1016/j.cell.2020.05.021 1:CAS:528:DC%2BB3cXhtFykt7fN 0820.92001
E.M. Leffler et al. Resistance to malaria through structural variation of red blood cell invasion receptors Science 356 eaam6393 28522690 5575826 10.1126/science.aam6393
H. Yan et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet Nat. Genet. 55 507 518 36864101 10011142 10.1038/s41588-023-01302-4 1:CAS:528:DC%2BB3sXkt1yntLw%3D 1172.94611
D.F. Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 464 704 712 19812545 10.1038/nature08516 1:CAS:528:DC%2BD1MXht1CisLrL 1431.62361
J.R. Xue et al. The functional and evolutionary impacts of human-specific deletions in conserved elements Science 380 eabn2253 37104592 10202372 10.1126/science.abn2253 1:CAS:528:DC%2BB3sXovFehu7o%3D
H. Li et al. The sequence alignment/map format and SAMtools Bioinformatics 25 2078 2079 19505943 2723002 10.1093/bioinformatics/btp352 1192.14050
J.N. Burton et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions Nat. Biotechnol. 31 1119 1125 24185095 4117202 10.1038/nbt.2727 1:CAS:528:DC%2BC3sXhslWjtLvM 0266.93032
N. Kaplan J. Dekker High-throughput genome scaffolding from in vivo DNA interaction frequency Nat. Biotechnol. 31 1143 1147 24270850 3880131 10.1038/nbt.2768 1:CAS:528:DC%2BC3sXhvVaitLbP 0304.90116
G. Marçais C. Kingsford A fast, lock-free approach for efficient parallel counting of occurrences of k-mers Bioinformatics 27 764 770 21217122 3051319 10.1093/bioinformatics/btr011 1228.92026
T.R. Ranallo-Benavidez K.S. Jaron M.C. Schatz GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes Nat. Commun. 11 2020NatCo.11.1432R 32188846 7080791 10.1038/s41467-020-14998-3 1:CAS:528:DC%2BB3cXlt1Wisb0%3D 1432
H. Cheng G.T. Concepcion X. Feng H. Zhang H. Li Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm Nat. Methods 18 170 175 33526886 7961889 10.1038/s41592-020-01056-5 1:CAS:528:DC%2BB3MXis1OntL0%3D
O. Dudchenko et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds Science 356 92 95 2017Sci..356..92D 28336562 5635820 10.1126/science.aal3327 1:CAS:528:DC%2BC2sXlsVymsbo%3D 1257.05167
N.C. Durand et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom Cell Syst. 3 99 101 27467250 5596920 10.1016/j.cels.2015.07.012 1:CAS:528:DC%2BC2sXhtFKks7w%3D 1412.00006
Martin, M. et al. WhatsHap: fast and accurate read-based phasing. Preprint at BioRxiv https://doi.org/10.1101/085050 (2016).
D. Mapleson G. Garcia Accinelli G. Kettleborough J. Wright B.J. Clavijo KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies Bioinformatics 33 574 576 27797770 10.1093/bioinformatics/btw663 1:CAS:528:DC%2BC1cXhvFagtrvL
S. Ou et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline Genome Biol. 20 31843001 6913007 10.1186/s13059-019-1905-y 1:CAS:528:DC%2BC1MXisVSntb3O 0819.11013 275
J.M. Flynn et al. RepeatModeler2 for automated genomic discovery of transposable element families Proc. Natl Acad. Sci. USA 117 9451 9457 2020PNAS.117.9451F 32300014 7196820 10.1073/pnas.1921046117 1:CAS:528:DC%2BB3cXnvFeqt74%3D 1246.65051
F. Delehelle S. Cussat-Blanc J.-M. Alliot H. Luga P. Balaresque ASGART: fast and parallel genome scale segmental duplications mapping Bioinformatics 34 2708 2714 30101303 10.1093/bioinformatics/bty172 1:CAS:528:DC%2BC1MXhtV2gt7fK
G. Benson Tandem repeats finder: a program to analyze DNA sequences Nucleic Acids Res. 27 573 580 9862982 148217 10.1093/nar/27.2.573 1:CAS:528:DyaK1MXhtVKmtrg%3D 0889.76042
D. Kim B. Langmead S.L. Salzberg HISAT: a fast spliced aligner with low memory requirements Nat. Methods 12 357 360 25751142 4655817 10.1038/nmeth.3317 1:CAS:528:DC%2BC2MXjvFOnsL0%3D
M. Pertea et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Nat. Biotechnol. 33 290 295 25690850 4643835 10.1038/nbt.3122 1:CAS:528:DC%2BC2MXivFais70%3D 1016.68652
T. Brůna K.J. Hoff A. Lomsadze M. Stanke M. Borodovsky BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database NAR Genomics Bioinformatics 3 lqaa108 33575650 7787252 10.1093/nargab/lqaa108
M. Stanke et al. AUGUSTUS: ab initio prediction of alternative transcripts Nucleic Acids Res. 34 W435 W439 16845043 1538822 10.1093/nar/gkl200 1:CAS:528:DC%2BD28Xps1yiu78%3D 1106.92024
A.V. Lukashin M. Borodovsky GeneMark. hmm: new solutions for gene finding Nucleic Acids Res. 26 1107 1115 9461475 147337 10.1093/nar/26.4.1107 1:CAS:528:DyaK1cXhvVWksr4%3D 0812.92008
The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution Nature 485 635 641 2012Natur.485.635T 10.1038/nature11119
W. Li A. Godzik Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences Bioinformatics 22 1658 1659 16731699 10.1093/bioinformatics/btl158 1:CAS:528:DC%2BD28XmsVent7s%3D 1160.74426
C. Holt M. Yandell MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects BMC Bioinformatics 12 491 22192575 3280279 10.1186/1471-2105-12-491
L. Venturini S. Caim G.G. Kaithakottil D.L. Mapleson D. Swarbreck Leveraging multiple transcriptome assembly methods for improved gene structure annotation GigaScience 7 30052957 6105091 10.1093/gigascience/giy093 giy093
B.J. Haas et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies Nucleic Acids Res. 31 5654 5666 14500829 206470 10.1093/nar/gkg770 1:CAS:528:DC%2BD3sXns1Cntbs%3D 1374.94046
P. Jones et al. InterProScan 5: genome-scale protein function classification Bioinformatics 30 1236 1240 24451626 3998142 10.1093/bioinformatics/btu031 1:CAS:528:DC%2BC2cXmvFCjsr4%3D 0962.83038
S. Marco-Sola J.C. Moure M. Moreto A. Espinosa Fast gap-affine pairwise alignment using the wavefront algorithm Bioinformatics 37 456 463 32915952 10.1093/bioinformatics/btaa777 1:CAS:528:DC%2BB3MXhvFeksrjN 1466.20008
A. Guarracino S. Heumos S. Nahnsen P. Prins E. Garrison ODGI: understanding pangenome graphs Bioinformatics 38 3319 3326 35552372 9237687 10.1093/bioinformatics/btac308 1:CAS:528:DC%2BB38XisVKmtrrJ
Parmigiani, L., Garrison, E., Stoye, J., Marschall, T. & Doerr, D. Panacus: fast and exact pangenome growth and core size estimation. Bioinformatics https://doi.org/10.1093/bioinformatics/btae720 (2024).
Y. Zhou et al. Graph pangenome captures missing heritability and empowers tomato breeding Nature 606 527 534 2022Natur.606.527Z 35676474 9200638 10.1038/s41586-022-04808-9 1:CAS:528:DC%2BB38XhsFWhu7bO 1506.17014
B. Buchfink C. Xie D.H. Huson Fast and sensitive protein alignment using DIAMOND Nat. Methods 12 59 60 25402007 10.1038/nmeth.3176 1:CAS:528:DC%2BC2cXhvFKlsrzN 1470.65206
D.M. Emms S. Kelly OrthoFinder: phylogenetic orthology inference for comparative genomics Genome Biol. 20 31727128 6857279 10.1186/s13059-019-1832-y 1346.00009 238
L.-T. Nguyen H.A. Schmidt A. Von Haeseler B.Q. Minh IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies Mol. Biol. Evol. 32 268 274 25371430 10.1093/molbev/msu300 1:CAS:528:DC%2BC2MXivFGltrs%3D 1180.42006
G. Yu D.K. Smith H. Zhu Y. Guan T.T. Lam Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data Methods Ecol. Evol. 8 28 36 10.1111/2041-210X.12628
J.T. Lovell et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes eLife 11 e78526 36083267 9462846 10.7554/eLife.78526 1:CAS:528:DC%2BB3sXisVOltrfO
H. Li New strategies to improve minimap2 alignment accuracy Bioinformatics 37 4572 4574 34623391 8652018 10.1093/bioinformatics/btab705 1:CAS:528:DC%2BB38XhsFKjs7o%3D 0973.81017
M. Goel H. Sun W.-B. Jiao K. Schneeberger SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies Genome Biol. 20 31842948 6913012 10.1186/s13059-019-1911-0 277
P. Danecek et al. Twelve years of SAMtools and BCFtools GigaScience 10 33590861 7931819 10.1093/gigascience/giab008 1474.35297 giab008
S. Purcell et al. PLINK: a tool set for whole-genome association and population-based linkage analyses Am. J. Hum. Genet. 81 559 575 17701901 1950838 10.1086/519795 1:CAS:528:DC%2BD2sXhtVSqurrL 1135.57005