Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix.
Cabral, Wayne A; Mertts, Marianna V; Makareeva, Elenaet al.
2003 • In Journal of Biological Chemistry, 278 (12), p. 10006-12
[en] The majority of collagen mutations causing osteogenesis imperfecta (OI) are glycine substitutions that disrupt formation of the triple helix. A rare type of collagen mutation consists of a duplication or deletion of one or two Gly-X-Y triplets. These mutations shift the register of collagen chains with respect to each other in the helix but do not interrupt the triplet sequence, yet they have severe clinical consequences. We investigated the effect of shifting the register of the collagen helix by a single Gly-X-Y triplet on collagen assembly, stability, and incorporation into fibrils and matrix. These studies utilized a triplet duplication in COL1A1 exon 44 that occurred in the cDNA and gDNA of two siblings with lethal OI. The normal allele encodes three identical Gly-Ala-Hyp triplets at aa 868-876, whereas the mutant allele encodes four. The register shift delays helix formation, causing overmodification. Differential scanning calorimetry yielded a decrease in T(m) of 2 degrees C for helices with one mutant chain and a 6 degrees C decrease in helices with two mutant chains. An in vitro binary co-processing assay of N-proteinase cleavage demonstrated that procollagen with the triplet duplication has slower N-propeptide cleavage than in normal controls or procollagen with proalpha1(I) G832S, G898S, or G997S substitutions, showing that the register shift persists through the entire helix. The register shift disrupts incorporation of mutant collagen into fibrils and matrix. Proband fibrils formed inefficiently in vitro and contained only normal helices and helices with a single mutant chain. Helices with two mutant chains and a significant portion of helices with one mutant chain did not form fibrils. In matrix deposited by proband fibroblasts, mutant chains were abundant in the immaturely cross-linked fraction but constituted a minor fraction of maturely cross-linked chains. The profound effects of shifting the collagen triplet register on chain interactions in the helix and on fibril formation correlate with the severe clinical consequences.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Cabral, Wayne A; National Institutes of Health, Bethesda, Maryland - USA > Section on connective Tissue Disorders
Mertts, Marianna V; National Institutes of Health, Bethesda, Maryland -USA > Section on Physical Biochemistry
Makareeva, Elena; National Institutes of Health, Bethesda, Maryland - USA > Section on Physical Biochemistry
Colige, Alain ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire des tissus conjonctifs
Tekin, Mustafa; MCV/VCU, Richmond, Virginia > Dpt of Human Genetics
Pandya, Arti; MCV/VCU, Richmond, Virginia > Dpt of Human Genetics
Leikin, Sergey; National Institutes of Health, Bethesda, Maryland- USA > Section on Physical Biochemistry
Marini, Joan C; National Institutes of Health, Bethesda, Maryland - USA > Section on Connective Tissue Disorders
Language :
English
Title :
Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix.
Publication date :
2003
Journal title :
Journal of Biological Chemistry
ISSN :
0021-9258
eISSN :
1083-351X
Publisher :
American Society for Biochemistry and Molecular Biology, Baltimore, United States - Maryland
Van der Hoeve, J., and de Kleyn, A. (1918) Arch. Ophthal. 95, 81-93
Marini, J. C., and Chernoff, E. J. (2001) in Management of Genetic Syndromes (Cassidy, S. B., and Allanson, J. E., eds) pp. 281-300, Wiley-Liss, New York
Sillence, D. O., Senn, A., and Danks, D. M. (1979) J. Med. Genet. 16, 101-116
Byers, P. H. (1993) in Connective Tissue and Its Heritable Disorders (Royce, P. M., and Steinmann, B., eds) pp. 317-350, Wiley-Liss, New York
Prockop, D. J., and Kivirikko, K. I. (1995) Annu. Rev. Biochem. 64, 403-434
Willing, M. C., Deschenes, S. P., Scott, D. A., Byers, P. H., Slayton, R. L., Pitts, S. H., Arikat, H., and Roberts, E. J. (1994) Am. J. Hum. Genet. 55, 638-647
Dalgleish, R. (1997) Nucleic Acids Res. 25, 181-187
Dalgleish, R. (1998) Nucleic Acids Res. 26, 253-255
Byers, P. H., Wallis, G. A., and Willing, M. C. (1991) J. Med. Genet. 28, 433-442
Pace, J. M., Kuslich, C. D., Willing, M. C., and Byers, P. H. (2001) J. Med. Genet. 38, 443-449
Hawkins, J. R., Superti-Furga, A., Steinmann, B., and Dalgleish, R. (1991) J. Biol. Chem. 266, 22370-22374
Wallis, G. A., Kadler, K. E., Starman, B. J., and Byers, P. H. (1992) J. Biol. Chem. 267, 25529-25534
Ward, L. M., Lalic, L., Roughley, P. J., and Glorieux, F. H. (2001) Hum. Mutat. 17, 434
Pace, J. M., Atkinson, M., Willing, M. C., Wallis, G. A., and Byers, P. H. (2001) Hum. Mutat. 18, 319-326
Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E., and Brenner, M. K. (1999) Nat. Med. 5, 309-313
Bonadio, J., Holbrook, K. A., Gelinas, R. E., Jacob, J., and Byers, P. H. (1985) J. Biol. Chem. 260, 1734-1742
Nicholls, A. C., Oliver, J., Renouf, D. V., Heath, D. A., and Pope, F. M. (1992) Hum. Genet. 88, 627-633
Chomczynski, P., and Sacchi, N. (1987) Anal. Biochem. 162, 156-159
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Science 239, 487-491
Grange, D. K., Gottesman, G. S., Lewis, M. B., and Marini, J. C. (1990) Nucleic Acids Res. 18, 4227-4236
Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463-5467
Bateman, J. F., and Golub, S. B. (1994) Matrix Biol. 14, 251-262
Southwick, P. L., Ernst, L. A., Tauriello, E. W., Parker, S. R., Mujumdar, R. B., Mujumdar, S. R., Clever, H. A., and Waggoner, A. S. (1990) Cytometry 11, 418-430
Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J., and Waggoner, A. S. (1993) Bioconj. Chem. 4, 105-111
Colige, A., Beschin, A., Samyn, B., Goebels, Y., Van Beeumen, J., Nusgens, B. V., and Lapiere, C. M. (1995) J. Biol. Chem. 270, 16724-16730
Fiedler-Nagy, C., Bruckner, P., Hayashi, T., and Prockop, D. J. (1981) Arch. Biochem. Biophys. 212, 668-677
Fiedler-Nagy, C., Bruckner, P., Hayashi, T., Fietzek, P. P., and Prockop, D. J. (1982) J. Biol. Chem. 257, 9181-9188
McBride, D. J., Kadler, K. E., Hijima, Y., and Prockop, D. J. (1992) Matrix 12, 256-263
Leikina, E., Mertts, M. V., Kuznetsova, N., and Leikin, S. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 1314-1318
Williams, B. R., Gelman, R. A., Poppke, D. C., and Piez, K. A. (1978) J. Biol. Chem. 253, 6578-6585
Marini, J. C., Grange, D. K., Gottesman, G. S., Lewis, M. B., and Koeplin, D. (1989) J. Biol. Chem. 264, 11893-11900
Vogel, B. E., Doelz, R., Kadler, K. E., Hojima, Y., Engel, J., and Prockop, D. J. (1988) J. Biol. Chem. 263, 19249-19255
Dombrowski, K. E., and Prockop, D. J. (1988) J. Biol. Chem. 263, 16545-16552
Vogel, B. E., Minor, R. R., Freund, M., and Prockop, D. J. (1987) J. Biol. Chem. 262, 14737-14744
Tiffany, M. L., and Krimm, S. (1969) Biopolymers 8, 347-359
Filie, J. D., Orrison, B. M., Wang, Q., Lewis, M. B., and Marini, J. C. (1993) Hum. Mutat. 2, 380-388
Forlino, A., Zolezzi, F., Valli, M., Pignatti, P. F., Cetta, G., Brunelli, P. C., and Mottes, M. (1994) Hum. Mol. Genet. 3, 2201-2206
Sacca, B., Renner, C., and Moroder, L. (2002) J. Mol. Biol. 324, 309-318
Sacca, B., Sinner, E.-K., Kaiser, J., Lubken, C., Eble, J. A., and Moroder, L. (2002) Chem. Biochem. 9, 904-907