3D printing; Ion conduction; Polymer electrolytes; Room temperature ionic liquids; Stereolithography; 3-D printing; 3D-printing; Alkylammonium cations; Ionogels; Mesylates; Polymer electrolyte; Protic ionic liquids; Triflates; Atomic and Molecular Physics, and Optics; Physical and Theoretical Chemistry
Abstract :
[en] A range of protic ionic liquids (PILs) based on tri-n-alkylammonium cations and mesylate/triflate anions were incorporated into a polymer matrix to form ionogels (IGs). These systems were investigated for their thermal and electrochemical behaviour, as well as under the aspect of ion motion via PFG-NMR. The ionic conductivities of the ILs/IGs are in the range of 10-4-10-3 S/cm-1 at elevated temperatures and the diffusion coefficients are around 10-11 m2 s-1. Successful 3D printing of an IG with 70 wt % of IL is possible via stereolithography approaches, opening up applications in, e. g., structured ion-conductive membranes.
Disciplines :
Chemistry
Author, co-author :
Lange, Alyna; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam-Golm, Germany
Arwish, Sajal; Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
Rensonnet, Aurélie ; Université de Liège - ULiège > Molecular Systems (MolSys)
Elamin, Khalid; Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Gothenborg, 41296, Sweden
Abdurrokhman, Iqbaal; Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Gothenborg, 41296, Sweden
Wojnarowska, Zaneta; Institute of Physics, The University of Silesia in Katowice, 75 Pułku Piechoty 1 A, 41-500, Chorzow, Poland
Rosenwinkel, Mark; Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Schönhoff, Monika; Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
Zehbe, Kerstin; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam-Golm, Germany
Taubert, Andreas ; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam-Golm, Germany
Language :
English
Title :
3D Printable Polymer Electrolytes for Ionic Conduction based on Protic Ionic Liquids.
Publication date :
10 November 2024
Journal title :
Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry
ISSN :
1439-4235
eISSN :
1439-7641
Publisher :
John Wiley and Sons Inc, Germany
Pages :
e202400849
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Universität Potsdam Energimyndigheten SSF - Stiftelsen för Strategisk Forskning
S. G. Chalk, J. F. Miller, J. Power Sources 2006, 159(1), 73–80. DOI: 10.1016/j.jpowsour.2006.04.058.
M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, Chem. Rev. 2020, 120(14), 6783–6819. DOI: 10.1021/acs.chemrev.9b00531.
K. S. Ngai, S. Ramesh, K. Ramesh, J. C. Juan, Ionics 2016, 22(8), 1259–1279. DOI: 10.1007/s11581-016-1756-4.
X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Adv. Energy Mater. 2018, 8(7), 1702184. DOI: 10.1002/aenm.201702184.
M.-A. Néouze, J. Le Bideau, P. Gaveau, S. Bellayer, A. I. Vioux, Chem. Mater. 2006, 18(17), 3931–3936. DOI: 10.1021/cm060656c.
J. Le Bideau, L. Viau, A. I. Vioux, Chem. Soc. Rev. 2011, 40(2), 907–925. DOI: 10.1039/C0CS00059K.
T. Torimoto, T. Tsuda, K. Okazaki, S. Kuwabata, Adv. Mater. 2010, 22(11), 1196–1221. DOI: 10.1002/adma.200902184.
S. Werner, M. Haumann, P. Wasserscheid, Annu. Rev. Chem. Biomol. Eng. 2010, 1, 203–230. DOI: 10.1146/annurev-chembioeng-073009-100915.
T. L. Greaves, C. J. Drummond, Chem. Rev. 2008, 108(1), 206–237. DOI: 10.1021/cr068040u.
L. E. Shmukler, M. S. Gruzdev, N. O. Kudryakova, Y. A. Fadeeva, A. M. Kolker, L. P. Safonova, J. Mol. Liq. 2018, 266, 139–146. DOI: 10.1016/j.molliq.2018.06.059.
V. Di Noto, E. Negro, J.-Y. Sanchez, C. Iojoiu, JACS 2010, 132(7), 2183–2195. DOI: 10.1021/ja906975z.
S.-Y. Lee, A. Ogawa, M. Kanno, H. Nakamoto, T. Yasuda, M. Watanabe, JACS 2010, 132(28), 9764–9773. DOI: 10.1021/ja102367x.
L. Zanchet, L. G. da Trindade, W. Bariviera, K. M. Nobre Borba, R. D. M. Santos, V. A. Paganin, C. P. de Oliveira, E. A. Ticianelli, E. M. A. Martini, M. O. de Souza, J. Mater. Sci. 2020, 55(16), 6928–6941. DOI: 10.1007/s10853-020-04454-4.
T. Stettner, F. C. Walter, A. Balducci, Batteries Supercaps 2019, 2(1), 55–59. DOI: 10.1002/batt.201800096.
S. Banerjee, D. E. Curtin, J. Fluor. Chem. 2004, 125(8), 1211–1216. DOI: 10.1016/j.jfluchem.2004.05.018.
K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104(10), 4535–4585. DOI: 10.1021/cr0207123.
R. Souzy, B. Ameduri, Prog. Polym. Sci. 2005, 30(6), 644–687. DOI: 10.1016/j.progpolymsci.2005.03.004.
O. Danyliv, A. Martinelli, J. Phys. Chem. C 2019, 123(23), 14813–14824. DOI: 10.1021/acs.jpcc.9b02874.
J. Lu, F. Yan, J. Texter, Prog. Polym. Sci. 2009, 34(5), 431–448. DOI: 10.1016/j.progpolymsci.2008.12.001.
W. Lu, K. Henry, C. Turchi, J. Pellegrino, J. Electrochem. Soc. 2008, 155(5), A361. DOI: 10.1149/1.2869202.
M. Martinez, Y. Molmeret, L. Cointeaux, C. Iojoiu, J.-C. Leprêtre, N. El Kissi, P. Judeinstein, J.-Y. Sanchez, J. Power Sources 2010, 195(18), 5829–5839. DOI: 10.1016/j.jpowsour.2010.01.036.
M. G. Cowan, M. Masuda, W. M. McDanel, Y. Kohno, D. L. Gin, R. D. Noble, J. Membr. Sci. 2016, 498, 408–413. DOI: 10.1016/j.memsci.2015.10.019.
A. S. Shaplov, R. Marcilla, D. Mecerreyes, Electrochim. Acta 2015, 175, 18–34. DOI: 10.1016/j.electacta.2015.03.038.
K. Matsumoto, T. Endo, Macromolecules 2008, 41(19), 6981–6986. DOI: 10.1021/ma801293j.
M. A. B. H. Susan, T. Kaneko, A. Noda, M. Watanabe, JACS 2005, 127(13), 4976–4983. DOI: 10.1021/ja045155b.
K. Zehbe, A. Lange, A. Taubert, Energy Fuels 2019, 33(12), 12885–12893. DOI: 10.1021/acs.energyfuels.9b03379.
S. Pal, Y.-Z. Su, Y.-W. Chen, C.-H. Yu, C.-W. Kung, S.-S. Yu, ACS Appl. Mater. Interfaces. 2022, DOI: 10.1021/acsami.2c02690.
Z. Wang, J. Zhang, J. Liu, S. Hao, H. Song, J. Zhang, ACS Appl. Mater. Interfaces 2021, 13(4), 5614–5624. DOI: 10.1021/acsami.0c21121.
M. Zhang, X. Tao, R. Yu, Y. He, X. Li, X. Chen, W. S. Huang, J. Mater. Chem. A 2022, 10(22), 12005–12015. DOI: 10.1039/d1ta09641a.
S. Sen, S. E. Goodwin, P. V. Barbará, G. A. Rance, D. Wales, J. M. Cameron, V. Sans, M. Mamlouk, K. Scott, D. A. Walsh, ACS Appl. Polym. Mater. 2021, 3(1), 200–208. DOI: 10.1021/acsapm.0c01042.
L. Zhao, F. Ran, Chem. Commun. 2023, 59(46), 6969–6986. DOI: 10.1039/d3cc00412k.
X. Yu, A. Manthiram, Energy Environ. Sci. 2018, 11(3), 527–543. DOI: 10.1039/C7EE02555F.
X. Wang, J. Chen, D. Wang, Z. Mao, Nat. Commun. 2021, 12(1), 7109. DOI: 10.1038/s41467-021-27473-4.
S. Zhang, S. Xue, Y. Wang, G. Zhang, N. Arif, P. Li, Y.-J. Zeng, Batteries 2023, 9(11), 546, DOI: 10.3390/batteries9110546.
S. Ponnada, D. Babu Gorle, R. S. Chandra Bose, M. Sadat Kiai, M. Devi, C. Venkateswara Raju, N. Baydogan, K. Kar Nanda, F. Marken, R. K. Sharma, Batteries Supercaps 2022, 5(8). DOI: 10.1002/batt.202200223.
M. P. Browne, E. Redondo, M. Pumera, Chem. Rev. 2020, 120(5), 2783–2810. DOI: 10.1021/acs.chemrev.9b00783.
M. Cheng, R. Deivanayagam, R. Shahbazian-Yassar, Batteries Supercaps 2020, 3(2), 130–146. DOI: 10.1002/batt.201900130.
F. Zhang, M. Wei, V. V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou, Nano Energy 2017, 40, 418–431. DOI: 10.1016/j.nanoen.2017.08.037.
Q. Chen, R. Xu, Z. He, K. Zhao, L. Pan, J. Electrochem. Soc. 2017, 164(9), A1852–A1857. DOI: 10.1149/2.0651709jes.
V. Di Noto, M. Piga, G. A. Giffin, S. Lavina, E. S. Smotkin, J.-Y. Sanchez, C. Iojoiu, J. Phys. Chem. C 2012, 116(1), 1361–1369. DOI: 10.1021/jp204241y.
V. Di Noto, M. Piga, G. A. Giffin, S. Lavina, E. S. Smotkin, J.-Y. Sanchez, C. Iojoiu, J. Phys. Chem. C 2012, 116(1), 1370–1379. DOI: 10.1021/jp204242q.
Z. Wojnarowska, A. Lange, A. Taubert, M. Paluch, ACS Appl. Mater. Interfaces 2021, 13(26), 30614–30624. DOI: 10.1021/acsami.1c06260.
C. Iojoiu, M. Martinez, M. Hanna, Y. Molmeret, L. Cointeaux, J.-C. Leprêtre, N. E. Kissi, J. Guindet, P. Judeinstein, J.-Y. Sanchez, Polym. Adv. Technol. 2008, 19(10), 1406–1414. DOI: 10.1002/pat.1219.
H. Nakamoto, M. Watanabe, Chem. Commun. 2007(24), 2539–2541. DOI: 10.1039/B618953A.
E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 1965, 42(1), 288–292. DOI: 10.1063/1.1695690.
A. Mariani, M. Bonomo, X. Gao, B. Centrella, A. Nucara, R. Buscaino, A. Barge, N. Barbero, L. Gontrani, S. Passerini, J. Mol. Liq. 2021, 324, 115069. DOI: 10.1016/j.molliq.2020.115069.
J. L. Lebga-Nebane, S. E. Rock, J. Franclemont, D. Roy, S. Krishnan, Ind. Eng. Chem. Res. 2012, 51(43), 14084–14098. DOI: 10.1021/ie301687c.
T. Wu, L.-S. Jou, Y.-C. Lin, S.-G. Su, I.-W. Sun, ECS Trans. 2011, 33(26), 83–86. DOI: 10.1149/1.3557878.
U. A. Rana, R. Vijayaraghavan, M. Walther, J. Sun, A. A. J. Torriero, M. Forsyth, D. R. MacFarlane, Chem. Commun. 2011, 47(42), 11612–11614. DOI: 10.1039/C1CC14761G.
K. Elamin, M. Shojaatalhosseini, O. Danyliv, A. Martinelli, J. Swenson, Electrochim. Acta 2019, 299, 979–986. DOI: 10.1016/j.electacta.2018.12.154.
S. Zhang, K. H. Lee, J. Sun, C. D. Frisbie, T. P. Lodge, Macromolecules 2011, 44(22), 8981–8989. DOI: 10.1021/ma201356j.
H. Pan, J. Luo, J. Zhao, M. Wubbenhorst, IEEE Trans. Dielect. Electr. Insul. 2022, 1. DOI: 10.1109/TDEI.2022.3164064.
J. Luo, O. Conrad, I. F. J. Vankelecom, J. Mater. Chem. 2012, 22(38), 20574. DOI: 10.1039/C2JM34359B.
A. Gallastegui, F. Foglia, P. F. McMillan, N. Casado, A. Gueguen, D. Mecerreyes, Polymer 2023, 280, 126064. DOI: 10.1016/j.polymer.2023.126064.
G. P. Pandey, S. A. Hashmi, J. Power Sources 2009, 187(2), 627–634. DOI: 10.1016/j.jpowsour.2008.
N. De Vos, C. Maton, C. V. Stevens, ChemElectroChem 2014, 1(8), 1258–1270. DOI: 10.1002/celc.201402086.
M. Hayyan, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, T. X. Mei, J. Ind. Eng. Chem. 2013, 19(1), 106–112. DOI: 10.1016/j.jiec.2012.07.011.
S. Kazemiabnavi, Z. Zhang, K. Thornton, S. Banerjee, J. Phys. Chem. B 2016, 120(25), 5691–5702. DOI: 10.1021/acs.jpcb.6b03433.
M. S. Gruzdev, L. E. Shmukler, N. O. Kudryakova, A. M. Kolker, Y. Sergeeva, L. P. Safonova, J. Mol. Liq. 2017, 242, 838–844. DOI: 10.1016/j.molliq.2017.07.078.
A. Khan, X. Lu, L. Aldous, C. Zhao, J. Phys. Chem. C 2013, 117(36), 18334–18342. DOI: 10.1021/jp405759j.
K. Kakinuma, H. Taniguchi, T. Asakawa, T. Miyao, M. Uchida, Y. Aoki, T. Akiyama, A. Masuda, N. Sato, A. Iiyama, J. Electrochem. Soc. 2022, 169(4), 44522. DOI: 10.1149/1945-7111/ac624b.
T. Xiao, R. Wang, Z. Chang, Z. Fang, Z. Zhu, C. Xu, Prog. Nat. Sci.: Mater. Int. 2020, 30(6), 743–750. DOI: 10.1016/j.pnsc.2020.08.014.
M. S. Miran, H. Kinoshita, T. Yasuda, M. A. B. H. Susan, M. Watanabe, Phys. Chem. Chem. Phys. 2012, 14(15), 5178–5186. DOI: 10.1039/c2cp00007e.
F. Stickel, E. W. Fischer, R. Richert, J. Chem. Phys. 1995, 102(15), 6251–6257. DOI: 10.1063/1.469071.
M. Musiał, S. Cheng, Z. Wojnarowska, M. D. Paluch, J. Mol. Liq. 2020, 317, 113971. DOI: 10.1016/j.molliq.2020.113971.
B. Yao, M. Paluch, Z. Wojnarowska, Sci. Rep. 2023, 13(1), 3040. DOI: 10.1038/s41598-023-29518-8.
I. Bandrés, D. F. Montaño, I. Gascón, P. Cea, C. Lafuente, Electrochim. Acta 2010, 55(7), 2252–2257. DOI: 10.1016/j.electacta.2009.11.073.
J. Vila, P. Ginés, J. M. Pico, C. Franjo, E. Jiménez, L. M. Varela, O. Cabeza, Fluid Phase Equilib. 2006, 242(2), 141–146. DOI: 10.1016/j.fluid.2006.01.022.
I. Abdurrokhman, K. Elamin, O. Danyliv, M. Hasani, J. Swenson, A. Martinelli, J. Phys. Chem. B 2019, 123(18), 4044–4054. DOI: 10.1021/acs.jpcb.9b01274.
S. Noor, P. M. Bayley, M. Forsyth, D. R. MacFarlane, Electrochim. Acta 2013, 91, 219–226. DOI: 10.1016/j.electacta.2012.11.113.
J. Vila, C. Franjo, J. M. Pico, L. M. Varela, O. Cabeza, Port. Electrochim. Acta 2007, 25(1), 163–172. DOI: 10.4152/pea.200701163.
X. Tang, X. Chang, B. Zhu, L. Cui, B. Jiang, F. Meng, G. Yan, Polym. Adv. Technol. 2022, 33(12), 4317–4329. DOI: 10.1002/pat.5861.
Q. Ruan, M. Yao, Y. Du, H. Dong, J. Liu, X. Yuan, W. Fang, G. Zhao, H. Zhang, Nano Energy 2023, 106, 108087. DOI: 10.1016/j.nanoen.2022.108087.
S. Wang, X. Liu, A. Wang, Z. Wang, J. Chen, Q. Zeng, X. Wang, L. Zhang, Polym. Chem. 2018, 9(37), 4674–4682. DOI: 10.1039/c8py00951a.
M. Middendorf, M. Schönhoff, J. Phys. Chem. B 2024, 128(12), 2939–2947. DOI: 10.1021/acs.jpcb.3c08156.
M. Kunze, S. Jeong, E. Paillard, M. Schönhoff, M. Winter, S. Passerini, Adv. Energy Mater. 2011, 1(2), 274–281. DOI: 10.1002/aenm.201000052.
M. Kunze, E. Paillard, S. Jeong, G. B. Appetecchi, M. Schönhoff, M. Winter, S. Passerini, J. Phys. Chem. C 2011, 115(39), 19431–19436. DOI: 10.1021/jp2055969.
S. K. Davidowski, F. Thompson, W. Huang, M. Hasani, S. A. Amin, C. A. Angell, J. L. Yarger, J. Phys. Chem. B 2016, 120(18), 4279–4285. DOI: 10.1021/acs.jpcb.6b01203.
S. K. Mann, S. P. Brown, D. R. MacFarlane, ChemPhysChem 2020, 21(13), 1444–1454. DOI: 10.1002/cphc.202000242.
K. R. Harris, J. Phys. Chem. B 2019, 123(32), 7014–7023. DOI: 10.1021/acs.jpcb.9b04443.
D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat, K. Fraser, Phys. Chem. Chem. Phys. 2009, 11(25), 4962–4967. DOI: 10.1039/b900201d.
S. Jang, Y. S. Kang, D. Kim, S. Park, C. Seol, S. Lee, S. M. Kim, S. J. Yoo, Adv. Mater. 2023, 35(43), e2204902. DOI: 10.1002/adma.202204902.
Y. Ke, W. Yuan, F. Zhou, W. Guo, J. Li, Z. Zhuang, X. Su, B. Lu, Y. Zhao, Y. Tang, Y. Chen, J. Song, Renew. Sustain. Energy Rev. 2021, 145, 110860. DOI: 10.1016/j.rser.2021.110860.
R. Umezaki, J. Murata, Mater. Chem. Phys. 2021, 259, 124081. DOI: 10.1016/j.matchemphys.2020.124081.
M. Chen, C. Zhao, F. Sun, J. Fan, H. Li, H. Wang, eTransportation 2020, 5, 100075. DOI: 10.1016/j.etran.2020.100075.