[en] Gain-of-function mutations of dynamin-2, a mechano-GTPase that remodels membrane and actin filaments, cause centronuclear myopathy (CNM), a congenital disease that mainly affects skeletal muscle tissue. Among these mutations, the variants p.A618T and p.S619L lead to a gain of function and cause a severe neonatal phenotype. By using total internal reflection fluorescence microscopy (TIRFM) in immortalized human myoblasts expressing the pH-sensitive fluorescent protein (pHluorin) fused to the insulin-responsive aminopeptidase IRAP as a reporter of the GLUT4 vesicle trafficking, we measured single pHluorin signals to investigate how p.A618T and p.S619L mutations influence exocytosis. We show here that both dynamin-2 mutations significantly reduced the number and durations of pHluorin signals induced by 10 μM ionomycin, indicating that in addition to impairing exocytosis, they also affect the fusion pore dynamics. These mutations also disrupt the formation of actin filaments, a process that reportedly favors exocytosis. This altered exocytosis might importantly disturb the plasmalemma expression of functional proteins such as the glucose transporter GLUT4 in skeletal muscle cells, impacting the physiology of the skeletal muscle tissue and contributing to the CNM disease.
Disciplines :
Human health sciences: Multidisciplinary, general & others Biochemistry, biophysics & molecular biology
Author, co-author :
Bayonés, Lucas; Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Guerra-Fernández, María José; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
Hinostroza, Fernando; Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile ; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
Báez-Matus, Ximena ; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
Vásquez-Navarrete, Jacqueline; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
Gallo, Luciana I ; Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Parra Sánchez, Sergio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing
Martínez, Agustín D; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
González-Jamett, Arlek ; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile ; Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
Marengo, Fernando D; Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Cárdenas, Ana M ; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
Language :
English
Title :
Gain-of-Function Dynamin-2 Mutations Linked to Centronuclear Myopathy Impair Ca2+-Induced Exocytosis in Human Myoblasts.
ANID - Agencia Nacional de Investigación y Desarrollo CONACYT - Consejo Nacional de Ciencia y Tecnología
Funding text :
This research was funded by the grants FONDECYT 1220825 (to A.M.C.) and ACE210014 (to CINV) from ANID, Chile. LB has a postdoctoral fellowship (# 838783) from CONACYT, México.
González-Jamett A.M. Bevilacqua J.A. Cárdenas Díaz A.M. Hereditary Myopathies Muscle Cell and Tissue—Current Status of Research Field Sakuma K. IntechOpen London, U.K 2018 10.5772/intechopen.76076
Vandersmissen I. Biancalana V. Servais L. Dowling J.J. Vander Stichele G. Van Rooijen S. Thielemans L. An integrated modelling methodology for estimating the prevalence of centronuclear myopathy Neuromuscul. Disord. 2018 28 766 777 10.1016/j.nmd.2018.06.012 30122513
Böhm J. Biancalana V. Dechene E.T. Bitoun M. Pierson C.R. Schaefer E. Karasoy H. Dempsey M.A. Klein F. Dondaine N. et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy Hum. Mutat. 2012 33 949 959 10.1002/humu.22067 22396310
González-Jamett A.M. Haro-Acuña V. Momboisse F. Caviedes P. Bevilacqua J.A. Cárdenas A.M. Dynamin-2 in nervous system disorders J. Neurochem. 2014 128 210 223 10.1111/jnc.12455
Arriagada-Diaz J. Prado-Vega L. Cárdenas A.M. Ardiles A.O. Gonzalez-Jamett A.M. Dynamin Superfamily at Pre- and Postsynapses: Master Regulators of Synaptic Transmission and Plasticity in Health and Disease Neuroscientist 2020 28 41 58 10.1177/1073858420974313
Gomez T.S. Hamann M.J. McCarney S. Savoy D.N. Lubking C.M. Heldebrant M.P. Labno C.M. McKean D.J. McNiven M.A. Burkhardt J.K. et al. Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse Nat. Immunol. 2005 6 261 270 10.1038/ni1168 15696170
Otsuka A. Abe T. Watanabe M. Yagisawa H. Takei K. Yamada H. Dynamin 2 is required for actin assembly in phagocytosis in Sertoli cells Biochem. Biophys. Res. Commun. 2009 378 478 482 10.1016/j.bbrc.2008.11.066 19032944
González-Jamett A.M. Momboisse F. Guerra M.J. Ory S. Báez-Matus X. Barraza N. Calco V. Houy S. Couve E. Neely A. et al. Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in It neuroendocrine chromaffin cells PLoS ONE 2013 8 e70638
Yamada H. Takeda T. Michiue H. Abe T. Takei K. Actin bundling by dynamin 2 and cortactin is implicated in cell migration by stabilizing filopodia in human non-small cell lung carcinoma cells Int. J. Oncol. 2016 49 877 886 10.3892/ijo.2016.3592
Chuang M.C. Lin S.S. Ohniwa R.L. Lee G.H. Su Y.A. Chang Y.C. Tang M.J. Liu Y.W. Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion J. Cell. Biol. 2019 218 1670 1685 10.1083/jcb.201809161
Arneson L.N. Segovis C.M. Gomez T.S. Schoon R.A. Dick C.J. Lou Z. Billadeau D.D. Leibson P.J. Dynamin 2 regulates granule exocytosis during NK cell-mediated cytotoxicity J. Immunol. 2008 181 6995 7001 10.4049/jimmunol.181.10.6995
Fan F. Ji C. Wu Y. Ferguson S.M. Tamarina N. Philipson L.H. Lou X. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis J. Clin. Investig. 2015 125 4026 4041 10.1172/JCI80652 26413867
Kitajima Y. Ishii T. Kohda T. Ishizuka M. Yamazaki K. Nishimura Y. Tanaka T. Dan S. Nakajima M. Mechanistic study of PpIX accumulation using the JFCR39 cell panel revealed a role for dynamin 2-mediated exocytosis Sci. Rep. 2019 9 8666 10.1038/s41598-019-44981-y 31209282
Wu Q. Zhang Q. Liu B. Li Y. Wu X. Kuo S. Zheng L. Wang C. Zhu F. Zhou Z. Dynamin 1 Restrains Vesicular Release to a Subquantal Mode in Mammalian Adrenal Chromaffin Cells J. Neurosci. 2019 39 199 211 10.1523/JNEUROSCI.1255-18.2018 30381405
Sun E.W. Matusica D. Wattchow D.A. McCluskey A. Robinson P.J. Keating D.J. Dynamin regulates L cell secretion in human gut Mol. Cell. Endocrinol. 2021 535 111398 10.1016/j.mce.2021.111398
González-Jamett A.M. Báez-Matus X. Hevia M.A. Guerra M.J. Olivares M.J. Martínez A.D. Neely A. Cárdenas A.M. The association of dynamin with synaptophysin regulates quantal size and duration of exocytotic events in chromaffin cells J. Neurosci. 2010 30 10683 10691 10.1523/JNEUROSCI.5210-09.2010 20702699
Lasič E. Stenovec M. Kreft M. Robinson P.J. Zorec R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements Biochim. Biophys. Acta Gen. Subj. 2017 1861 2293 2303 10.1016/j.bbagen.2017.06.022
Zhou X. Shentu P. Xu Y. Spatiotemporal Regulators for Insulin-Stimulated GLUT4 Vesicle Exocytosis J. Diabetes Res. 2017 2017 1683678 10.1155/2017/1683678
Chen W. Wang L. You W. Shan T. Myokines mediate the cross talk between skeletal muscle and other organs J. Cell. Physiol. 2021 236 2393 2412 10.1002/jcp.30033
Chin Y.H. Lee A. Kan H.W. Laiman J. Chuang M.C. Hsieh S.T. Liu Y.W. Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation Hum. Mol. Genet. 2015 24 5542 5554 10.1093/hmg/ddv285
González-Jamett A.M. Baez-Matus X. Olivares M.J. Hinostroza F. Guerra-Fernández M.J. Vasquez-Navarrete J. Bui M.T. Guicheney P. Romero N.B. Bevilacqua J.A. et al. Dynamin-2 mutations linked to Centronuclear Myopathy impair actin-dependent trafficking in muscle cells Sci. Rep. 2017 7 4580 10.1038/s41598-017-04418-w
Cowling B.S. Prokic I. Tasfaout H. Rabai A. Humbert F. Rinaldi B. Nicot A.S. Kretz C. Friant S. Roux A. et al. Amphiphysin (BIN1) negatively regulates dynamin 2 for normal muscle maturation J. Clin. Investig. 2017 127 4477 4487 10.1172/JCI90542 29130937
Lin S.S. Hsieh T.L. Liou G.G. Li T.N. Lin H.C. Chang C.W. Wu H.Y. Yao C.K. Liu Y.W. Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development Cell Rep. 2020 33 108310 10.1016/j.celrep.2020.108310 33113375
Fujise K. Okubo M. Abe T. Yamada H. Nishino I. Noguchi S. Takei K. Takeda T. Mutant BIN1-Dynamin 2 complexes dysregulate membrane remodeling in the pathogenesis of centronuclear myopathy J. Biol. Chem. 2021 296 100077 10.1074/jbc.RA120.015184 33187981
Kenniston J.A. Lemmon M.A. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients EMBO J. 2010 29 3054 3067 10.1038/emboj.2010.187 20700106
Chen Y. Lippincott-Schwartz J. Selective visualization of GLUT4 storage vesicles and associated Rab proteins using IRAP-pHluorin Methods Mol. Biol. 2015 1298 173 179 25800841
Han J. Pluhackova K. Böckmann R.A. The Multifaceted Role of SNARE Proteins in Membrane Fusion Front. Physiol. 2017 8 5 10.3389/fphys.2017.00005 28163686
Contreras-Ferrat A. Lavandero S. Jaimovich E. Klip A. Calcium signaling in insulin action on striated muscle Cell Calcium 2014 56 390 396 10.1016/j.ceca.2014.08.012 25224502
Ojuka E.O. Goyaram V. Smith J.A. The role of CaMKII in regulating GLUT4 expression in skeletal muscle Am. J. Physiol. Endocrinol. Metab. 2012 303 E322 E331 10.1152/ajpendo.00091.2012
Naro F. De Arcangelis V. Coletti D. Molinaro M. Zani B. Vassanelli S. Reggiani C. Teti A. Adamo S. Increase in cytosolic Ca2+ induced by elevation of extracellular Ca2+ in skeletal myogenic cells Am. J. Physiol. Cell. Physiol. 2003 284 C969 C976 10.1152/ajpcell.00237.2002
Li Q. Zhu X. Ishikura S. Zhang D. Gao J. Sun Y. Contreras-Ferrat A. Foley K.P. Lavandero S. Yao Z. et al. Ca2+ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells Am. J. Physiol. Endocrinol. Metab. 2014 307 E209 E224 10.1152/ajpendo.00045.2014
Jullié D. Choquet D. Perrais D. Recycling endosomes undergo rapid closure of a fusion pore on exocytosis in neuronal dendrites J. Neurosci. 2014 34 11106 11118 10.1523/JNEUROSCI.0799-14.2014 25122907
Vásquez-Navarrete J. Martínez A.D. Ory S. Baéz-Matus X. González-Jamett A.M. Brauchi S. Caviedes P. Cárdenas A.M. RCAN1 Knockdown Reverts Defects in the Number of Calcium-Induced Exocytotic Events in a Cellular Model of Down Syndrome Front. Cell. Neurosci. 2018 12 189 10.3389/fncel.2018.00189 30034324
Sankaranarayanan S. De Angelis D. Rothman J.E. Ryan T.A. The use of pHluorins for optical measurements of presynaptic activity Biophys. J. 2000 79 2199 2208 10.1016/S0006-3495(00)76468-X
Leitz J. Kavalali E.T. Ca2+ influx slows single synaptic vesicle endocytosis J. Neurosci. 2011 31 16318 16326 10.1523/JNEUROSCI.3358-11.2011 22072683
Vardjan N. Stenovec M. Jorgacevski J. Kreft M. Zorec R. Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles J. Neurosci. 2007 27 4737 4746 10.1523/JNEUROSCI.0351-07.2007
Zhu Y. Xu J. Heinemann S.F. Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging Neuron 2009 61 397 411 10.1016/j.neuron.2008.12.024
González-Jamett A.M. Momboisse F. Haro-Acuña V. Bevilacqua J.A. Caviedes P. Cárdenas A.M. Dynamin-2 function and dysfunction along the secretory pathway Front. Endocrinol. 2013 4 126 10.3389/fendo.2013.00126
Wang L. Barylko B. Byers C. Ross J.A. Jameson D.M. Albanesi J.P. Dynamin 2 mutants linked to centronuclear myopathies form abnormally stable polymers J. Biol. Chem. 2010 285 22753 22757 10.1074/jbc.C110.130013
Klip A. McGraw T.E. James D.E. Thirty sweet years of GLUT4 J. Biol. Chem. 2019 294 11369 11381 10.1074/jbc.REV119.008351 31175156
Schnyder S. Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise Bone 2015 80 115 125 10.1016/j.bone.2015.02.008
Witczak C.A. Jessen N. Warro D.M. Toyoda T. Fujii N. Anderson M.E. Hirshman M.F. Goodyear L.J. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle Am. J. Physiol. Endocrinol. Metab. 2010 298 E1150 E1160 10.1152/ajpendo.00659.2009 20215576
Park D.R. Park K.H. Kim B.J. Yoon C.S. Kim U.H. Exercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles Diabetes 2015 64 1224 1234 10.2337/db14-0939
Buvinic S. Almarza G. Bustamante M. Casas M. López J. Riquelme M. Sáez J.C. Huidobro-Toro J.P. Jaimovich E. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle J. Biol. Chem. 2009 284 34490 34505 10.1074/jbc.M109.057315 19822518
Osorio-Fuentealba C. Contreras-Ferrat A.E. Altamirano F. Espinosa A. Li Q. Niu W. Lavandero S. Klip A. Jaimovich E. Electrical stimuli release ATP to increase GLUT4 translocation and glucose uptake via PI3Kγ-Akt-AS160 in skeletal muscle cells Diabetes 2013 62 1519 1526 10.2337/db12-1066 23274898
Contreras-Ferrat A. Llanos P. Vásquez C. Espinosa A. Osorio-Fuentealba C. Arias-Calderon M. Lavandero S. Klip A. Hidalgo C. Jaimovich E. Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release, which both impinge on GLUT4 translocation J. Cell Sci. 2014 127 1911 1923 24569874
Marengo F.D. Cárdenas A.M. How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch. 2018 470 155 167 10.1007/s00424-017-2052-5
Elhamdani A. Palfrey H.C. Artalejo C.R. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells Neuron 2001 31 819 830 10.1016/S0896-6273(01)00418-4
Álvarez de Toledo G. Montes M.Á. Montenegro P. Borges R. Phases of the exocytotic fusion pore FEBS Lett. 2018 592 3532 3541 10.1002/1873-3468.13234
Tsuboi T. Rutter G.A. Multiple forms of “kiss-and-run” exocytosis revealed by evanescent wave microscopy Curr. Biol. 2003 13 563 567 10.1016/S0960-9822(03)00176-3
Stenkula K.G. Lizunov V.A. Cushman S.W. Zimmerberg J. Insulin controls the spatial distribution of GLUT4 on the cell surface through regulation of its postfusion dispersal Cell. Metab. 2010 12 250 259 10.1016/j.cmet.2010.08.005
Fan F. Wu Y. Hara M. Rizk A. Ji C. Nerad D. Tamarina N. Lou X. Dynamin deficiency causes insulin secretion failure and hyperglycemia Proc. Natl. Acad. Sci. USA 2021 118 e2021764118 10.1073/pnas.2021764118 34362840
Moro A. van Nifterick A. Toonen R.F. Verhage M. Dynamin controls neuropeptide secretion by organizing dense-core vesicle fusion sites Sci. Adv. 2021 7 eabf0659 10.1126/sciadv.abf0659 34020952
Müller M.S. Obel L.F. Waagepetersen H.S. Schousboe A. Bak L.K. Complex actions of ionomycin in cultured cerebellar astrocytes affecting both calcium-induced calcium release and store-operated calcium entry Neurochem. Res. 2013 38 1260 1265 10.1007/s11064-013-1021-4
Di Fiore P.P. De Camilli P. Endocytosis and signaling: An inseparable partnership Cell 2001 106 1 4 10.1016/S0092-8674(01)00428-7
Cárdenas A.M. Gallo L.I. Marengo F.D. Exocytosis, endocytosis and recycling of secretory vesicles in neuroendocrine cells, and its regulation by cortical actin BioCell 2022 46 1867 1873
Knudsen J.R. Madsen A.B. Li Z. Andersen N.R. Schjerling P. Jensen T.E. Gene deletion of γ-actin impairs insu-lin-stimulated skeletal muscle glucose uptake in growing mice but not in mature adult mice Physiol. Rep. 2022 10 e15183 10.14814/phy2.15183
Madsen A.B. Knudsen J.R. Henriquez-Olguin C. Angin Y. Zaal K.J. Sylow L. Schjerling P. Ralston E. Jensen T.E. β-actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle Am. J. Physiol. Endocrinol. Metab. 2018 315 E110 E125 10.1152/ajpendo.00392.2017
Shin W. Ge L. Arpino G. Villarreal S.A. Hamid E. Liu H. Zhao W.D. Wen P.J. Chiang H.C. Wu L.G. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis Cell 2018 173 934 945.e12 10.1016/j.cell.2018.02.062
Antonescu C.N. Díaz M. Femia G. Planas J.V. Klip A. Clathrin-dependent and independent endocytosis of glucose transporter 4 (GLUT4) in myoblasts: Regulation by mitochondrial uncoupling Traffic 2008 9 1173 1190 10.1111/j.1600-0854.2008.00755.x
Hartig S.M. Ishikura S. Hicklen R.S. Feng Y. Blanchard E.G. Voelker K.A. Pichot C.S. Grange R.W. Raphael R.M. Klip A. et al. The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2 J. Cell. Sci. 2009 122 2283 2291 10.1242/jcs.041343
Thorley M. Duguez S. Mazza E.M.C. Valsoni S. Bigot A. Mamchaoui K. Harmon B. Voit T. Mouly V. Duddy W. Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines Skelet. Muscle 2016 6 43 10.1186/s13395-016-0115-5
Báez-Matus X. Figueroa-Cares C. Gónzalez-Jamett A.M. Almarza-Salazar H. Arriagada C. Maldifassi M.C. Guerra M.J. Mouly V. Bigot A. Caviedes P. et al. Defects in G-Actin Incorporation into Filaments in Myoblasts Derived from Dysferlinopathy Patients Are Restored by Dysferlin C2 Domains Int. J. Mol. Sci. 2019 21 37 10.3390/ijms21010037