[en] Do sensory cortices process more than one sensory modality? To answer these questions, scientists have generated a wide variety of studies at distinct space-time scales in different animal models, and often shown contradictory conclusions. Some conclude that this process occurs in early sensory cortices, but others that this occurs in areas central to sensory cortices. Here, we sought to determine whether sensory neurons process and encode physical stimulus properties of different modalities (tactile and acoustic). For this, we designed a bimodal detection task where the senses of touch and hearing compete from trial to trial. Two Rhesus monkeys performed this novel task, while neural activity was recorded in areas 3b and 1 of the primary somatosensory cortex (S1). We analyzed neurons' coding properties and variability, organizing them by their receptive field's position relative to the stimulation zone. Our results indicate that neurons of areas 3b and 1 are unimodal, encoding only the tactile modality in both the firing rate and variability. Moreover, we found that neurons in area 3b carried more information about the periodic stimulus structure than those in area 1, possessed lower response and coding latencies, and had a lower intrinsic time scale. In sum, these differences reveal a hidden processing-based hierarchy. Finally, using a powerful nonlinear dimensionality reduction algorithm, we show that the activity from areas 3b and 1 can be separated, establishing a clear division in the functionality of these two subareas of S1.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Parra Sánchez, Sergio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Díaz, Héctor; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Zainos, Antonio; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Alvarez, Manuel ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Zizumbo, Jerónimo ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Rivera-Yoshida, Natsuko ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Pujalte, Sebastián; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Bayones, Lucas; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico
Romo, Ranulfo; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City 04510, Mexico ; El Colegio Nacional, Mexico City 06020, Mexico
Rossi-Pool, Román ; Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510 México City, Mexico ; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City 04510, Mexico
Language :
English
Title :
Hierarchical unimodal processing within the primary somatosensory cortex during a bimodal detection task.
Publication date :
27 December 2022
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
UNAM - Universidad Nacional Autónoma de México CONACYT - Consejo Nacional de Ciencia y Tecnología
Funding text :
Consejo Nacional de Ciencia y Tecnología; and IBRO Early Career Award 2022 (to R.R.-P.) from International Brain Research Association. S. Parra (fellowship CONACYT-631990), H.D. and J.Z. are doctoral students from Programa de Doctorado en Ciencias Biomédicas, UNAM. L.B. is a postdoctoral student (Postdoctoral fellowship CONACYT-838783).ACKNOWLEDGMENTS. We thank to José Vergara for her contribution during the experiments. We thank Gabriel Diaz-deLeon for his technical assistance. This work was supported by grants PAPIIT-IN205022 from the Dirección de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México (to R.R.-P.); CONACYT-319347 (to R.R.-P.) and CB2014-20140892 (to R.R.) from
D. J. Felleman, D. C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
D. G. Amaral, “The functional organization of perception and movement” in Principles of Neural Science (McGraw-Hill Education, ed. 5, 2014).
Y.-D. Zhou, J. M. Fuster, Somatosensory cell response to an auditory cue in a haptic memory task. Behav. Brain Res. 153, 573–578 (2004).
A. A. Ghazanfar, C. E. Schroeder, Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285 (2006).
J. R. Mahoney et al., Keeping in touch with the visual system: Spatial alignment and multisensory integration of visual-somatosensory inputs. Front. Psychol. 6, 1068 (2015).
J. S. Butler, J. J. Foxe, I. C. Fiebelkorn, M. R. Mercier, S. Molholm, Multisensory representation of frequency across audition and touch: High density electrical mapping reveals early sensory-perceptual coupling. J. Neurosci. 32, 15338–15344 (2012).
T. Deneux et al., Context-dependent signaling of coincident auditory and visual events in primary visual cortex. Elife 8, e44006 (2019).
C. Kayser, C. I. Petkov, M. Augath, N. K. Logothetis, Integration of touch and sound in auditory cortex. Neuron 48, 373–384 (2005).
S. Ferraro et al., Stereotactic electroencephalography in humans reveals multisensory signal in early visual and auditory cortices. Cortex 126, 253–264 (2020).
C. Perrodin, C. Kayser, N. Logothetis, C. Petkov, Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex. Proc. Natl. Acad. Sci. U.S.A. 112, 273–278 (2015).
C. Kayser, N. K. Logothetis, S. Panzeri, Visual enhancement of the information representation in auditory cortex. Curr. Biol. 20, 19–24 (2010).
M. M. Murray et al., Grabbing your ear: Rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb. Cortex 15, 963–974 (2005).
G. Iurilli et al., Sound-driven synaptic inhibition in primary visual cortex. Neuron 73, 814–828 (2012).
Y.-D. Zhou, J. M. Fuster, Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc. Natl. Acad. Sci. U.S.A. 97, 9777–9782 (2000).
A.-M. Bonnel, E. R. Haftser, Divided attention between simultaneous auditory and visual signals. Percept. Psychophys. 60, 179–190 (1998).
V. de Lafuente, R. Romo, Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).
R. Rossi-Pool et al., Invariant timescale hierarchy across the cortical somatosensory network. Proc. Natl. Acad. Sci. U.S.A. 118, e2021843118 (2021).
J. H. Kaas, R. J. Nelson, M. Sur, C.-S. Lin, M. Merzenich, Multiple representations of the body within the primary somatosensory cortex of primates. Science 204, 521–523 (1979).
S. B. Eickhoff, C. Grefkes, K. Zilles, G. R. Fink, The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb. Cortex 17, 1800–1811 (2007).
L. Lemus, A. Hernández, R. Luna, A. Zainos, R. Romo, Do Sensory Cortices Process More than One Sensory Modality during Perceptual Judgments? Neuron 67, 335–348 (2010).
R. Romo, R. Rossi-Pool, Turning touch into perception. Neuron 105, 16–33 (2020).
A. Belitski et al., Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J. Neurosci. 28, 5696–5709 (2008).
R. Luna, A. Hernández, C. D. Brody, R. Romo, Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8, 1210–1219 (2005).
E. Salinas, A. Hernández, A. Zainos, R. Romo, Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000).
M. M. Churchland et al., Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).
H. Atilgan et al., Integration of visual information in auditory cortex promotes auditory scene analysis through multisensory binding. Neuron 97, 640–655.e4 (2018).
J. D. Murray et al., A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).
J. H. Siegle et al., Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021), 10.1038/s41586-020-03171-x.
X.-J. Wang, Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).
L. McInnes, J. Healy, N. Saul, L. Großberger, UMAP: Uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
G. Diaz-deLeon et al., An abstract categorical decision code in dorsal premotor cortex (2022). https://doi.org/10.1073/pnas.2214562119.
A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014).
C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer-Verlag, 2006).
Y. Vázquez, E. Salinas, R. Romo, Transformation of the neural code for tactile detection from thalamus to cortex. Proc. Natl. Acad. Sci. U.S.A. 110, E2635–E2644 (2013).
R. Rossi-Pool et al., Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli. Proc. Natl. Acad. Sci. U.S.A. 113, E7966–E7975 (2016).
R. Rossi-Pool, A. Zainos, M. Alvarez, G. Diaz-deLeon, R. Romo, A continuum of invariant sensory and behavioral-context perceptual coding in secondary somatosensory cortex. Nat. Commun. 12, 2000 (2021).
Z. F. Mainen, T. J. Seinowski, Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995).
R. L. T. Goris, J. A. Movshon, E. P. Simoncelli, Partitioning neuronal variability. Nat. Neurosci. 17, 858–865 (2014).
E. P. Simoncelli, L. Paninski, J. Pillow, O. Schwartz, Characterization of neural responses with stochastic stimuli. Cogn. Neurosci. 3, 1 (2004).
P. Kara, P. Reinagel, R. C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646 (2000).
D. Festa, A. Aschner, A. Davila, A. Kohn, R. Coen-Cagli, Neuronal variability reflects probabilistic inference tuned to natural image statistics. Nat. Commun. 12, 3635 (2021).
D. Kobak, J. L. Pardo-Vazquez, M. Valente, C. K. Machens, A. Renart, State-dependent geometry of population activity in rat auditory cortex. Elife 8, e44526 (2019).
O. I. Rumyantsev et al., Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 100–105 (2020).
A. Tauste Campo et al., Thalamocortical interactions shape hierarchical neural variability during stimulus perception. bioRxiv [Preprint] (2022). https:/doi.org/10.1101/2022.09.20.508691. Accessed 22 September 2022.
V. de Lafuente, R. Romo, Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc. Natl. Acad. Sci. U.S.A. 103, 14266–14271 (2006).
R. J. Gardner et al., Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).
N. W. Gouwens et al., Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953 (2020).
A. Tauste Campo et al., Feed-forward information and zero-lag synchronization in the sensory thalamocortical circuit are modulated during stimulus perception. Proc. Natl. Acad. Sci. U.S.A. 116, 7513–7522 (2019).
C. Kayser, C. I. Petkov, M. Augath, N. K. Logothetis, Functional imaging reveals visual modulation of specific fields in auditory cortex. J. Neurosci. 27, 1824–1835 (2007).
A. Fontanini, D. B. Katz, Behavioral states, network states, and sensory response variability. J. Neurophysiol. 100, 1160–1168 (2008).
P. Baudot, M. Tapia, D. Bennequin, J.-M. Goaillard, Topological information data analysis. Entropy 21, 869 (2019).
T. A. Engel et al., Selective modulation of cortical state during spatial attention. Sci. Res. Rep. 354, 1140–1144 (2016).
E. Macaluso, The curious incident of attention in multisensory integration: Bottom-up vs. top-down. Multisens. Res. 29, 557–583 (2016).
R. Auksztulewicz, K. J. Friston, A. C. Nobre, Task relevance modulates the behavioural and neural effects of sensory predictions. PLOS Biol. 15, 1–27 (2017).
P. Mégevand, S. Molholm, A. Nayak, J. J. Foxe, Recalibration of the multisensory temporal window of integration results from changing task demands. PLoS One 8, 1–9 (2013).
B. Hommel et al., No one knows what attention is. Atten. Perception Psychophys. 81, 2288–2303 (2019).
A. Zainos et al., Bimodal detection task dataset. Zenodo. https://zenodo.org/record/7293495. Deposited 4 November 2022.