[en] The ability of cortical networks to integrate information from different sources is essential for cognitive processes. On one hand, sensory areas exhibit fast dynamics often phase-locked to stimulation; on the other hand, frontal lobe areas with slow response latencies to stimuli must integrate and maintain information for longer periods. Thus, cortical areas may require different timescales depending on their functional role. Studying the cortical somatosensory network while monkeys discriminated between two vibrotactile stimulus patterns, we found that a hierarchical order could be established across cortical areas based on their intrinsic timescales. Further, even though subareas (areas 3b, 1, and 2) of the primary somatosensory (S1) cortex exhibit analogous firing rate responses, a clear differentiation was observed in their timescales. Importantly, we observed that this inherent timescale hierarchy was invariant between task contexts (demanding vs. nondemanding). Even if task context severely affected neural coding in cortical areas downstream to S1, their timescales remained unaffected. Moreover, we found that these time constants were invariant across neurons with different latencies or coding. Although neurons had completely different dynamics, they all exhibited comparable timescales within each cortical area. Our results suggest that this measure is demonstrative of an inherent characteristic of each cortical area, is not a dynamical feature of individual neurons, and does not depend on task demands.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Rossi-Pool, Román ; Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico, romanr@ifc.unam.mx ranulfo.romo@gmail.com
Zainos, Antonio ; Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Alvarez, Manuel; Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Parra Sánchez, Sergio ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Brain-Inspired Computing ; Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Zizumbo, Jerónimo ; Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Romo, Ranulfo; Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico, romanr@ifc.unam.mx ranulfo.romo@gmail.com ; El Colegio Nacional, 06020 Mexico City, Mexico
Language :
English
Title :
Invariant timescale hierarchy across the cortical somatosensory network.
Publication date :
19 January 2021
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
X.-J. Wang, Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).
K. Wagstyl, L. Ronan, I. M. Goodyer, P. C. Fletcher, Cortical thickness gradients in structural hierarchies. Neuroimage 111, 241–250 (2015).
R. Romo, R. Rossi-Pool, Turning touch into perception. Neuron 105, 16–33 (2020).
R. Chaudhuri, K. Knoblauch, M.-A. Gariel, H. Kennedy, X.-J. Wang, A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).
M. R. Joglekar, J. F. Mejias, G. R. Yang, X.-J. Wang, Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron 98, 222–234.e8 (2018).
A. Anticevic, J. Lisman, How can global alteration of excitation/inhibition balance lead to the local dysfunctions that underlie schizophrenia? Biol. Psychiatry 81, 818–820 (2017).
G. D. Hoftman et al., Altered gradients of glutamate and gamma-aminobutyric acid transcripts in the cortical visuospatial working memory network in schizophrenia. Biol. Psychiatry 83, 670–679 (2018).
J. D. Murray et al., A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).
J. H. Siegle et al., A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas. bioRxiv, https://doi.org/10.1101/805010 (2019).
M. Spitmaan, H. Seo, D. Lee, A. Soltani, Multiple timescales of neural dynamics and integration of task-relevant signals across cortex. Proc. Natl. Acad. Sci. U.S.A. 117, 22522–22531 (2020).
U. Hasson, E. Yang, I. Vallines, D. J. Heeger, N. Rubin, A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).
C. J. Honey et al., Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76, 423–434 (2012).
E. Salinas, A. Hernández, A. Zainos, R. Romo, Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000).
J. H. R. Maunsell, W. T. Newsome, Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).
D. J. Felleman, D. C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
X.-J. Wang, Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).
E. Pálfi et al., Connectivity of neuronal populations within and between areas of primate somatosensory cortex. Brain Struct. Funct. 223, 2949–2971 (2018).
N. Saadon-Grosman, S. Arzy, Y. Loewenstein, Hierarchical cortical gradients in somatosensory processing. Neuroimage 222, 117257 (2020).
W. H. Talbot, I. Darian-Smith, H. H. Kornhuber, V. B. Mountcastle, The sense of flutter-vibration: Comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol. 31, 301–334 (1968).
P. R. Douglas, D. G. Ferrington, M. Rowe, Coding of information about tactile stimuli by neurones of the cuneate nucleus. J. Physiol. 285, 493–513 (1978).
L. Camarillo, R. Luna, V. Nácher, R. Romo, Coding perceptual discrimination in the somatosensory thalamus. Proc. Natl. Acad. Sci. U.S.A. 109, 21093–21098 (2012).
V. B. Mountcastle, W. H. Talbot, H. Sakata, J. Hyvärinen, Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys: Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32, 452–484 (1969).
M. Ashaber et al., Connectivity of somatosensory cortical area 1 forms an anatomical substrate for the emergence of multifinger receptive fields and complex feature selectivity in the squirrel monkey (Saimiri sciureus). J. Comp. Neurol. 522, 1769–1785 (2014).
A. Hernández, A. Zainos, R. Romo, Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 6191–6196 (2000).
L. Lemus, A. Hernández, R. Luna, A. Zainos, R. Romo, Do sensory cortices process more than one sensory modality during perceptual judgments? Neuron 67, 335–348 (2010).
V. de Lafuente, R. Romo, Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc. Natl. Acad. Sci. U.S.A. 103, 14266–14271 (2006).
C. Cavada, P. S. Goldman-Rakic, Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287, 393–421 (1989).
M. K. L. Baldwin, D. F. Cooke, A. B. Goldring, L. Krubitzer, Representations of fine digit movements in posterior and anterior parietal cortex revealed using long-train intracortical microstimulation in macaque monkeys. Cereb. Cortex 28, 4244–4263 (2018).
R. Romo, A. Hernández, A. Zainos, L. Lemus, C. D. Brody, Neuronal correlates of decision-making in secondary somatosensory cortex. Nat. Neurosci. 5, 1217–1225 (2002).
R. Rossi-Pool, A. Zainos, M. Alvarez, G. D. Leon, R. Romo, From an invariant sensory code to a perceptual categorical code in secondary somatosensory cortex. bioRxiv, https://doi.org/10.1101/2020.03.31.018879 (2020).
R. Romo, E. Salinas, Flutter discrimination: Neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4, 203–218 (2003).
R. Rossi-Pool, J. Vergara, R. Romo, “Constructing perceptual decision-making across cortex” in The Cognitive Neurosciences, 6/E, D. Poeppel, G. Mangun, M. Gazzaniga, Eds. (The MIT Press, 2020), pp. 413–427.
R. Rossi-Pool et al., Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli. Proc. Natl. Acad. Sci. U.S.A. 113, E7966–E7975 (2016).
R. Rossi-Pool et al., Decoding a decision process in the neuronal population of dorsal premotor cortex. Neuron 96, 1432–1446.e7 (2017).
S. E. Cavanagh, J. D. Wallis, S. W. Kennerley, L. T. Hunt, Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice. eLife 5, e18937 (2016).
A. Hernández et al., Decoding a perceptual decision process across cortex. Neuron 66, 300–314 (2010).
S. Panzeri, R. Senatore, M. A. Montemurro, R. S. Petersen, Correcting for the sampling bias problem in spike train information measures. J. Neurophysiol. 98, 1064–1072 (2007).
I. Kagan, A. Iyer, A. Lindner, R. A. Andersen, Space representation for eye movements is more contralateral in monkeys than in humans. Proc. Natl. Acad. Sci. U.S.A. 107, 7933–7938 (2010).
R. Luna, A. Hernández, C. D. Brody, R. Romo, Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8, 1210–1219 (2005).
R. V. Bretas, M. Taoka, H. Suzuki, A. Iriki, Secondary somatosensory cortex of primates: Beyond body maps, toward conscious self-in-the-world maps. Exp. Brain Res. 238, 259–272 (2020).
C. Condylis et al., Context-dependent sensory processing across primary and secondary somatosensory cortex. Neuron 106, 515–525.e5 (2020).
A. Bernacchia, H. Seo, D. Lee, X.-J. Wang, A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci. 14, 366–372 (2011).
D. F. Wasmuht, E. Spaak, T. J. Buschman, E. K. Miller, M. G. Stokes, Intrinsic neuronal dynamics predict distinct functional roles during working memory. Nat. Commun. 9, 3499 (2018).
F. Carnevale, V. de Lafuente, R. Romo, O. Barak, N. Parga, Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty. Neuron 86, 1067–1077 (2015).
E. M. Trautmann et al., Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019).
P. Gao, S. Ganguli, On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015).
R. Rossi-Pool, R. Romo, Low dimensionality, high robustness in neural population dynamics. Neuron 103, 177–179 (2019).
J. D. Semedo, A. Zandvakili, C. K. Machens, B. M. Yu, A. Kohn, Cortical areas interact through a communication subspace. Neuron 102, 249–259.e4 (2019).
R. Rossi-Pool et al., Temporal signals underlying a cognitive process in the dorsal premotor cortex. Proc. Natl. Acad. Sci. U.S.A. 116, 7523–7532 (2019).
N. T. Markov et al., A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).
A. Zainos et al, “Single Neuron Activity of S1, S2 and DPC of Macaca Mulatta Subjects performing the Temporal Pattern Discrimination Task.” Zenodo. 10.5281/zen-odo.4421855. Deposited 6 January 2021.