Photocatalysis; Titanium dioxide; doping; pollutant degradation; water treatment
Abstract :
[en] A sol-gel method is used to synthesize TiO2, using few organic products. In order to increase the photocatalytic activity in the near visible range (395 nm), cerium is used as a dopant at various concentrations ranging from 0.03 mol% to 4.40 mol%. The addition of cerium leads to the formation of p-n heterojunctions between Ce2O3 and TiO2, multiplying by 2 (under UV-visible light) or 2.6 (under visible light) the photocatalytic efficiency of the composite material with the best dopant amount, i.e. 0.06 mol% of cerium. X-ray diffraction showed the formation of TiO2 in its anatase form, while nitrogen adsorption/desorption isotherms showed changes in specific surface area as a function of the percentage of cerium added. The presence of cerium (III) in the sample is confirmed by XPS and the amount is determined quantitatively by ICP. DRUS analysis highlights the difference in bandgap caused by the Ce2O3 incorporated into the sample. In order to compare the different photocatalysts obtained, the degradation of p-nitrophenol is tested in their presence in water under UV light as well as a wavelength close to the visible range, i.e. 395 nm. Finally, based on the results obtained by electron paramagnetic resonance, a photoactivation mechanism of the mixed oxide is proposed.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Farcy, Antoine ; Université de Liège - ULiège > Chemical engineering ; Institute of Condensed Matter and Nanosciences -Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Louvain-La-Neuve, Belgium
Mathy, Maxine; Department of Chemical Engineering -Nanomaterials, Catalysis & Electrochemistry, University of Liège, Liège, Belgium
Lejeune, Louise; Institute of Condensed Matter and Nanosciences -Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Louvain-La-Neuve, Belgium
Eloy, Pierre ; Institute of Condensed Matter and Nanosciences -Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Louvain-La-Neuve, Belgium
Hermans, Sophie ; Institute of Condensed Matter and Nanosciences -Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Louvain-La-Neuve, Belgium
Drogui, Patrick; Centre INRS -Eau, Environnement (INRS-ETE), Terre, Québec City, Canada
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering ; Institute of Condensed Matter and Nanosciences -Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Louvain-La-Neuve, Belgium ; Centre INRS -Eau, Environnement (INRS-ETE), Terre, Québec City, Canada ; Centre INRS -Eau, Environnement (INRS-ETE), Terre, Québec City, Canada
Language :
English
Title :
Ce2O3 and TiO2 p-n heterojunction for enhanced degradation of p-nitrophenol under visible light
Publication date :
01 June 2025
Journal title :
Journal of Photochemistry and Photobiology A: Chemistry
R. T., A. Heydari, A. Henni, State of the Art Treatment of Produced Water, in: Water Treatment, InTech, 2013. 10.5772/53478.
Crini, G., Lichtfouse, E., Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17 (2019), 145–155, 10.1007/s10311-018-0785-9.
A. Gupta, M.R. Singh, WATER POLLUTION-SOURCES,EFFECTS AND CONTROL, (2016) 1–16. https://www.researchgate.net/publication/321289637.
Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Rahisuddin, F., Changani, M., Yousefi, S., Ahmadi, V., Vambol, Chlorination disinfection by-products in municipal drinking water – A review. J Clean Prod 273, 2020, 10.1016/j.jclepro.2020.123159.
Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R., Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J Clean Prod, 268, 2020, 10.1016/j.jclepro.2020.121725.
Deng, Y., Zhao, R., Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollut Rep 1 (2015), 167–176, 10.1007/s40726-015-0015-z.
Babuponnusami, A., Muthukumar, K., A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2 (2014), 557–572, 10.1016/j.jece.2013.10.011.
Khlyustova, A., Sirotkin, N., Kusova, T., Kraev, A., Titov, V., Agafonov, A., Doped TiO2: The effect of doping elements on photocatalytic activity. Mater Adv 1 (2020), 1193–1201, 10.1039/d0ma00171f.
Farcy, A., Lambert, S.D., Poelman, D., Yang, Z., Drault, F., Hermans, S., Drogui, P., Heinrichs, B., Malherbe, C., Eppe, G., Verdin, A., Mahy, J.G., Influence of crystallographic facet orientations of sol-gel ZnO on the photocatalytic degradation of p-nitrophenol in water. J Solgel Sci Technol, 2024, 10.1007/s10971-023-06301-9.
J.G. Mahy, C.A. Paez, C. Carcel, C. Bied, A.S. Tatton, C. Damblon, B. Heinrichs, M. Wong Chi Man, S.D. Lambert, Porphyrin-based hybrid silica-titania as a visible-light photocatalyst, J Photochem Photobiol A Chem 373 (2019) 66–76. 10.1016/j.jphotochem.2019.01.001.
Lettieri, S., Pavone, M., Fioravanti, A., Amato, L.S., Maddalena, P., Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: A review. Materials, 14, 2021, 10.3390/ma14071645.
Reinosa, J.J., Docio, C.M.Á., Ramírez, V.Z., Lozano, J.F.F., Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens. Ceram Int 44 (2018), 2827–2834, 10.1016/j.ceramint.2017.11.028.
Mahy, J.G., Lambert, S.D., Tilkin, R.G., Wolfs, C., Poelman, D., Devred, F., Gaigneaux, E.M., Douven, S., Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water depollution, Mater Today. Energy 13 (2019), 312–322, 10.1016/j.mtener.2019.06.010.
Tian, Q., Wei, W., Dai, J., Sun, Q., Zhuang, J., Zheng, Y., Liu, P., Fan, M., Chen, L., Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance. Appl Catal B 244 (2019), 45–55, 10.1016/j.apcatb.2018.11.045.
Cano-Franco, J.C., Álvarez-Láinez, M., Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation. Mater Sci Semicond Process 90 (2019), 190–197, 10.1016/j.mssp.2018.10.017.
Jamil, A., Sawaira, T., Ali, A., Awais, M., Habib, A., Hussain, T., Sharif, A., Iqbal, N., Afzal, A., Ce-TiO2 nanoparticles with surface-confined Ce3+/Ce4+ redox pairs for rapid sunlight-driven elimination of organic contaminants from water. Environ Nanotechnol Monit Manag, 21, 2024, 10.1016/j.enmm.2024.100946.
Janani, F.Z., Khiar, H., Taoufik, N., Elhalil, A., Sadiq, M., Puga, A.V., Mansouri, S., Barka, N., ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Mater Today Chem, 21, 2021, 10.1016/j.mtchem.2021.100495.
Li, F.B., Li, X.Z., Hou, M.F., Cheah, K.W., Choy, W.C.H., Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl Catal A Gen 285 (2005), 181–189, 10.1016/j.apcata.2005.02.025.
Qi, Y.Y., Niu, Z.W., Cheng, C., Cheng, Y., Structural and elastic properties of Ce2O3 under pressure from LDA+U method. Front Phys (beijing) 8 (2013), 405–411, 10.1007/s11467-013-0331-y.
Dahle, J.T., Arai, Y., Environmental geochemistry of cerium: Applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12 (2015), 1253–1278, 10.3390/ijerph120201253.
Casals, E., Zeng, M., Parra-Robert, M., Fernández-Varo, G., Morales-Ruiz, M., Jiménez, W., Puntes, V., Casals, G., Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small, 16, 2020, 10.1002/smll.201907322.
S. Pooyan spooyan, Sol-gel process and its application in Nanotechnology, Journal of Polymer Engineering and Technology 13 (2005) 38–41. http://polymer.aut.ac.ir/.
Kimura, N., Kitagawa, W., Kamagata, Y., Biodegradation of nitrophenol compounds, Environmental Science and Engineering (Subseries. Environmental Science), 2014, 112, 10.1007/978-3-319-01083-0_1.
Mahy, J.G., Lambert, S.D., Léonard, G.L.M., Zubiaur, A., Olu, P.Y., Mahmoud, A., Boschini, F., Heinrichs, B., Towards a large scale aqueous sol-gel synthesis of doped TiO2: Study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J Photochem Photobiol A Chem 329 (2016), 189–202, 10.1016/j.jphotochem.2016.06.029.
Lambert, S., Job, N., D'Souza, L., Pereira, M.F.R., Pirard, R., Heinrichs, B., Figueiredo, J.L., Pirard, J.P., Regalbuto, J.R., Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. J Catal 261 (2009), 23–33, 10.1016/j.jcat.2008.10.014.
Farcy, A., Mahy, J.G., Alié, C., Caucheteux, J., Poelman, D., Yang, Z., Eloy, P., Body, N., Hermans, S., Heinrichs, B., Lambert, S.D., Kinetic study of p-nitrophenol degradation with zinc oxide nanoparticles prepared by sol–gel methods. J Photochem Photobiol A Chem, 456, 2024, 10.1016/j.jphotochem.2024.115804.
Ramos-Delgado, N.A., Pino-Sandoval, D.A., López-Velázquez, K., Englezos, C., Villanueva-Rodríguez, M., Gracia-Pinilla, M.A., Boscher, N.D., Gardeniers, H.J.G.E., Susarrey-Arce, A., Acetaminophen oxidation under solar light using Fe-BiOBr as a mild Photo-Fenton catalyst. J Photochem Photobiol A Chem, 446, 2024, 10.1016/j.jphotochem.2023.115124.
Flores-Caballero, A.A., Manzo-Robledo, A., Alonso-Vante, N., The Cerium/Boron Insertion Impact in Anatase Nano-Structures on the Photo-Electrochemical and Photocatalytic Response. Surfaces 4 (2021), 54–65, 10.3390/surfaces4010008.
Breitwieser, M., Klose, C., Hartmann, A., Büchler, A., Klingele, M., Vierrath, S., Zengerle, R., Thiele, S., Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High-Performance Fuel Cells. Adv Energy Mater, 7, 2017, 10.1002/aenm.201602100.
Michalak, I., Chojnacka, K., Marycz, K., Using ICP-OES and SEM-EDX in biosorption studies. Microchim. Acta 172 (2011), 65–74, 10.1007/s00604-010-0468-0.
Pooarporn, Y., Worayingyong, A., Wörner, M., Songsiriritthigul, P., Braun, A.M., A comparative study of doped and un-doped sol-gel TiO2 and P25 TiO2 (photo)electrodes, in. Water Sci. Technol., 2007, 153–160, 10.2166/wst.2007.400.
Krishna, D.N.G., Philip, J., Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surf. Sci. Adv., 12, 2022, 10.1016/j.apsadv.2022.100332.
Bêche, E., Charvin, P., Perarnau, D., Abanades, S., Flamant, G., Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (Ce xTiyOz). In: Surface and Interface Analysis, 2008, 264–267, 10.1002/sia.2686.
Schmickler, W., Nazmutdinov, R.R., Wang, Q., Daoud, W.A., Electrochemistry of Ce(IV)/Ce(III) redox couples in mixed solutions for aqueous flow battery: Experimental and molecular modelling study. Electrochim Acta, 368, 2021, 10.1016/j.electacta.2020.137601.
D'Orlyé, F., Varenne, A., Georgelin, T., Siaugue, J.M., Teste, B., Descroix, S., Gareil, P., Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis. Electrophoresis 30 (2009), 2572–2582, 10.1002/elps.200800835.
Mahy, J.G., Deschamps, F., Collard, V., Jérôme, C., Bartlett, J., Lambert, S.D., Heinrichs, B., Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. J Solgel Sci Technol 87 (2018), 568–583, 10.1007/s10971-018-4751-6.
Kosmulski, M., Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci 152 (2009), 14–25, 10.1016/j.cis.2009.08.003.
Liao, D.L., Wu, G.S., Liao, B.Q., Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf A Physicochem Eng Asp 348 (2009), 270–275, 10.1016/j.colsurfa.2009.07.036.
Fronzi, M., Soon, A., Delley, B., Traversa, E., Stampfl, C., Stability and morphology of cerium oxide surfaces in an oxidizing environment: A first-principles investigation. J. Chem. Phys., 131, 2009, 10.1063/1.3191784.
Ke, S.C., Wang, T.C., Wong, M.S., Gopal, N.O., Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy. J. Phys. Chem. B 110 (2006), 11628–11634, 10.1021/jp0612578.
Kim, D.S., Han, S.J., Kwak, S.Y., Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J Colloid Interface Sci 316 (2007), 85–91, 10.1016/j.jcis.2007.07.037.
Tomboc, G.M., Gadisa, B.T., Joo, J., Kim, H., Lee, K., Hollow Structured Metal Sulfides for Photocatalytic Hydrogen Generation. ChemNanoMat 6 (2020), 850–869, 10.1002/cnma.202000125.
Wu, H., Meng, S., Zhang, J., Zheng, X., Wang, Y.X., Chen, S., Qi, G., Fu, X., Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. Appl Surf Sci, 505, 2020, 10.1016/j.apsusc.2019.144638.
Ghorbanloo, M., Nada, A.A., El-Maghrabi, H.H., Bekheet, M.F., Riedel, W., Djamel, B., Viter, R., Roualdes, S., Soliman, F.S., Moustafa, Y.M., Miele, P., Bechelany, M., Superior efficiency of BN/Ce2O3/TiO2 nanofibers for photocatalytic hydrogen generation reactions. Appl Surf Sci, 594, 2022, 10.1016/j.apsusc.2022.153438.
Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y., Yang, J., Bahnemann, D.W., Pan, J.H., Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal Today 335 (2019), 78–90, 10.1016/j.cattod.2018.10.053.
Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G., Savinov, E., Heterogeneous Photocatalytic Degradation of Nitrophenols 155 (2003), 207–214.
V. Augugliaro, L. Palmisano*, M. Schiavello, A. Sclafani, L. Marchese, G. Martra, F. Miano, Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion, Appl Catal 69 (1991) 323–340. http://dx.doi.org/10.1016/S0166-9834(00)83310-2.
Ikram, M., Raees, R., Haider, A., Ul-Hamid, A., Haider, J., Shahzadi, I., Nabgan, W., Goumri-Said, S., Kanoun, M.B., Ali, S., Enhanced photocatalytic and antibacterial activity of TiO2 Quantum dots doped with Cerium/Chitosan for Environmental Remediation: Experimental and theoretical approaches. Mater Chem Phys, 297, 2023, 10.1016/j.matchemphys.2023.127462.
Dey, A., Korde, S., Gogate, P.R., Agarkoti, C., Sonochemical synthesis of Ce-TiO2 nanocatalyst and subsequent application for treatment of real textile industry effluent. Ultrason Sonochem, 96, 2023, 10.1016/j.ultsonch.2023.106426.
Xie, Y., Yuan, C., Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl Catal B 46 (2003), 251–259, 10.1016/S0926-3373(03)00211-X.
Yadav, V., Sharma, H., Singh, R.K., Kumar, A., Saini, V.K., Cerium and boron co-doping in TiO2 boosts diclofenac photodegradation. Applied Nanoscience (switzerland) 13 (2023), 5903–5919, 10.1007/s13204-023-02845-y.