Extending the Lund-Malmö creatinine-based GFR equation to cystatin C - validation results from the European Kidney Function Consortium (EKFC) cohort of children and adults.
Björk, Jonas; Nyman, Ulf; Berg, Ullaet al.
2024 • In Scandinavian Journal of Clinical and Laboratory Investigation, 84 (7-8), p. 577-583
[en] The aim of the present study was to extend the creatinine-based Lund-Malmö GFR equation for use with rescaled cystatin C (r-LMRCys) and validate it against measured GFR (mGFR) in the EKFC cystatin C cohort of children (n = 2,293) and adults (n = 7,727). Rescaling was obtained by dividing each biomarker by a Q-value, representing the population-specific median biomarker level among healthy individuals. Validation included median bias/precision/accuracy (percent estimates within ±30% of mGFR, P30). Performance was compared with the EKFC-equation (EKFCCys), the CAPA cystatin C equation, the corresponding equations based on rescaled creatinine (r-LMRCr and EKFCCr) and the arithmetic mean of r-LMRCr and CAPA (r-LMRCr+CAPA), r-LMRCr and r-LMRCys (r-LMRMean), and EKFCCr and EKFCCys (EKFCMean). The overall P30 of r-LMRCys in adults was 86.2% (95% CI 85.4%-86.9%), which was 6.6 percentage points (pp; 95% CI 5.8-7.4 pp) higher than for CAPA and similar to r-LMRCr (P30 87.4%, 95% CI 86.6%-88.1%). r-LMRCys and EKFCCys exhibited similar performance both overall and across subgroups of age, sex, GFR and BMI and in children. All three arithmetic mean equations had similar P30-accuracy and generally performed better than the corresponding single-marker equations. Our results show that the Lund-Malmö GFR equation can be adapted for use with rescaled cystatin C with performance that is similar to the best-performing equations based on rescaled creatinine. The generality of the applied biomarker rescaling principle implies that the future demand for population- and biomarker-specific GFR estimating equations can be expected to decrease substantially.
Disciplines :
Urology & nephrology
Author, co-author :
Björk, Jonas ; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden ; Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
Nyman, Ulf ; Department of Translational Medicine, Division of Medical Radiology, Lund University, Malmö, Sweden
Berg, Ulla; Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
Bökenkamp, Arend ; Department of Paediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
Cavalier, Etienne ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Ebert, Natalie ; Institute of Public Health, Charité Universitätsmedizin Berlin, Berlin, Germany
Eriksen, Björn O ; Section of Nephrology, University Hospital of North Norway and Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsö, Norway
Derain Dubourg, Laurence ; Nephrologie, Dialyse, Hypertension et Exploration Fonctionnelle Renale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, and Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, Lyon, France
Goffin, Karolien ; Department of Nuclear Medicine & Molecular Imaging, University Hospital Leuven, Leuven, Belgium
Grubb, Anders ; Department of Clinical Chemistry, Skåne University Hospital, Lund, Lund University, Sweden
Hansson, Magnus ; Function area Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital Huddinge, and Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
Larsson, Anders ; Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
Lemoine, Sandrine ; Nephrologie, Dialyse, Hypertension et Exploration Fonctionnelle Renale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, IRIS Team, France
Littmann, Karin ; Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
Mariat, Christophe ; Service de Néphrologie, Dialyse et Transplantation Rénale, Hôpital Nord, CHU de Saint-Etienne, France
Melsom, Toralf ; Section of Nephrology, University Hospital of North Norway and Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsö, Norway
Schaeffner, Elke ; Institute of Public Health, Charité Universitätsmedizin Berlin, Berlin, Germany
Sundin, Per-Ola ; Karla Healthcare Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
Åsling-Monemi, Kajsa; Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
Delanaye, Pierre ; Université de Liège - ULiège > Département des sciences cliniques > Néphrologie ; Department of Nephrology-Dialysis-Apheresis, Hôpital Universitaire Carémeau, Nîmes, France
Pottel, Hans ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
Extending the Lund-Malmö creatinine-based GFR equation to cystatin C - validation results from the European Kidney Function Consortium (EKFC) cohort of children and adults.
Publication date :
08 January 2024
Journal title :
Scandinavian Journal of Clinical and Laboratory Investigation
Nyman U, Björk J, Delanaye P, et al.Rescaling creatinine makes GFR estimation equations generally applicable across populations - validation results for the Lund-Malmö equation in a French cohort of sub-Saharan ancestry. Clin Chem Lab Med. 2024;62(3):421–427. doi: 10.1515/cclm-2023-0496.
Delanaye P, Cavalier E, Stehlé T, et al.Glomerular filtration rate estimation in adults: myths and Promises. Nephron. 2024;148(6):408–414. doi: 10.1159/000536243.
Björk J, Nyman U, Delanaye P, et al.A novel method for creatinine adjustment makes the revised Lund-Malmö GFR equation applicable in children. Scand J Clin Lab Invest. 2020;80(6):456–463. doi: 10.1080/00365513.2020.1774641.
Pottel H, Björk J, Rule AD, et al.Cystatin C-based equation to estimate GFR without the inclusion of race and sex. N Engl J Med. 2023;388(4):333–343. doi: 10.1056/NEJMoa2203769.
Pottel H, Delanaye P, Schaeffner E, et al.Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant. 2017;32(3):497–507. doi: 10.1093/ndt/gfw425.
Pottel H, Björk J, Courbebaisse M, et al.Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data. Ann Intern Med. 2021;174(2):183–191. doi: 10.7326/M20-4366.
Delanaye P, Vidal-Petiot E, Björk J, et al.Performance of creatinine-based equations to estimate glomerular filtration rate in White and Black populations in Europe, Brazil and Africa. Nephrol Dial Transplant. 2023;38(1):106–118. doi: 10.1093/ndt/gfac241.
Pottel H, Schaeffner E, Ebert N., Evaluating the diagnostic value of rescaled β-trace protein in combination with serum creatinine and serum cystatin C in older adults. Clin Chim Acta. 2018;480:206–213. doi: 10.1016/j.cca.2018.02.026.
Pottel H, Nyman U, Björk J, et al.Extending the cystatin C based EKFC-equation to children - validation results from Europe. Pediatr Nephrol. 2024;39(4):1177–1183. doi: 10.1007/s00467-023-06192-6.
Nyman U, Björk J, Berg U, et al.The modified CKiD study estimated GFR equations for children and young adults under 25 years of age: performance in a european multicenter cohort. Am J Kidney Dis. 2022;80(6):807–810. doi: 10.1053/j.ajkd.2022.02.018.
Soveri I, Berg UB, Björk J, et al.Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64(3):411–424. doi: 10.1053/j.ajkd.2014.04.010.
Blirup-Jensen S, Grubb A, Lindstrom V, et al.Standardization of cystatin C: development of primary and secondary reference preparations. Scand J Clin Lab Invest Suppl. 2008;241:67–70. doi: 10.1080/00365510802150067.
Grubb A, Blirup-Jensen S, Lindstrom V, et al.First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med. 2010;48(11):1619–1621. doi: 10.1515/CCLM.2010.318.
Zegers I, Auclair G, Schimmel H, et al.Certification of cystatin C in the human serum reference material ERM-DA471/IFCC. European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM)Publications Office of the European Union; 2010https://publications.jrc.ec.europa.eu/repository/handle/JRC58953. (Available Dec 01, 2024).
Stokes P, O’Connor G., Development of a liquid chromatography-mass spectrometry method for the high-accuracy determination of creatinine in serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;794(1):125–136. doi: 10.1016/s1570-0232(03)00424-0.
Myers GL, Miller WG, Coresh J, et al.Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52(1):5–18. doi: 10.1373/clinchem.2005.0525144.
Kilbride HS, Stevens PE, Eaglestone G, et al.Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis. 2013;61(1):57–66. doi: 10.1053/j.ajkd.2012.06.016.
Grubb A, Horio M, Hansson LO, et al.Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem. 2014;60(7):974–986. doi: 10.1373/clinchem.2013.220707.
Delanaye P, Derain-Dubourg L, Björk J, et al.Estimating glomerular filtration in young people. Clin Kidney J. 2024;17:sfae261.
Stevens LA, Zhang Y, Schmid CH., Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol. 2008;21(6):797–807.
K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Guideline 4. Estimation of GFR. Am J Kidney Dis. 2002;39: s76–S92.
Pottel H, Hoste L, Delanaye P., Abnormal glomerular filtration rate in children, adolescents and young adults starts below 75 mL/min/1.73 m(2). Pediatr Nephrol. 2015;30(5):821–828. doi: 10.1007/s00467-014-3002-5.
Björk J, Grubb A, Sterner G, et al.Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest. 2011;71(3):232–239. doi: 10.3109/00365513.2011.557086.
Delanaye P, Rule AD, Schaeffner E, et al.Performance of the European Kidney Function Consortium (EKFC) creatinine-based equation in United States cohorts. Kidney Int. 2024;105(3):629–637. doi: 10.1016/j.kint.2023.11.024.
Fan L, Levey AS, Gudnason V, et al.Comparing GFR estimating equations using cystatin C and creatinine in elderly individuals. J Am Soc Nephrol. 2015;26(8):1982–1989. Erratum in: J Am Soc Nephrol 2016;1927:2917. doi: 10.1681/ASN.2014060607.
Levey AS, Tighiouart H, Simon AL, et al.Comparing newer GFR estimating equations using creatinine and cystatin C to the CKD-EPI equations in adults. Am J Kidney Dis. 2017;70(4):587–589. doi: 10.1053/j.ajkd.2017.04.012.
Inker LA, Levey AS, Tighiouart H, et al.Performance of glomerular filtration rate estimating equations in a community-based sample of Blacks and Whites: the multiethnic study of atherosclerosis. Nephrol Dial Transplant. 2018;33(3):417–425. doi: 10.1093/ndt/gfx042.
Björk J, Bäck SE, Ebert N, et al.GFR estimation based on standardized creatinine and cystatin C: a European multicenter analysis in older adults. Clin Chem Lab Med. 2018;56(3):422–435. doi: 10.1515/cclm-2017-0563.
Björk J, Nyman U, Berg U, et al.Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children. Pediatr Nephrol. 2019;34(6):1087–1098. doi: 10.1007/s00467-018-4185-y.
Fu EL, Levey AS, Coresh J, et al.Accuracy of GFR estimating equations based on creatinine, cystatin C or both in routine care. Nephrol Dial Transplant. 2024;39(4):694–706. doi: 10.1093/ndt/gfad219.