[en] The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear. We performed a comparative analysis of the pathogenicity of pre-epidemic and epidemic Asian ZIKV strains in mouse embryonic brains using a female immunocompetent intraplacental infection mouse model. All studied Asian ZIKV strains are neurovirulent, but pre-epidemic strains are consistently more pathogenic in the embryos than their epidemic equivalents. Pathogenicity is not directly linked to viral replication. By contrast, an influx of macrophages/microglial cells is noted in infected fetal brains for both pre-epidemic and epidemic ZIKV strains. Moreover, all tested ZIKV strains trigger an immunological response, whereby the intensity of the response differs between strains, and with epidemic ZIKV strains generally mounting a more attenuated immunostimulatory response. Our study reveals that Asian ZIKV strains evolved towards pathogenic attenuation, potentially resulting in CZS emergence in neonates rather than premature death in utero.
Disciplines :
Microbiology
Author, co-author :
Darmuzey, Maïlis ; Virology and Immunology Unit, GIGA-Infection, Immunity and Inflammation, University of Liège, Liège, Belgium ; KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium
Touret, Franck ; Unité Des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), Marseille, France
Slowikowski, Emily ; KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
Gladwyn-Ng, Ivan; Department of Application Scientists, Taconic Biosciences, Leverkusen, Germany
Ahuja, Karan; Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
Sanchez-Felipe, Lorena ; KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium
de Lamballerie, Xavier ; Unité Des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), Marseille, France
Verfaillie, Catherine ; Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
Marques, Pedro E ; KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
Neyts, Johan ; KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium. johan.neyts@kuleuven.be
Kaptein, Suzanne J F ; KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium. suzanne.kaptein@kuleuven.be
Language :
English
Title :
Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity.
H2020 - 734584 - ZikaPLAN - Zika Preparedness Latin American Network
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union
Funding text :
We thank Prof. Catherine Sadzot-Delvaux (Li\u00E8ge University, Uli\u00E8ge) for her support. We warmly thank Stijn Hendrickx for technical support. We thank Niels Cremers, Elke Maas, Johanna Bouckaert, Jill Swinnen and the staff at the Rega animal facility at KU Leuven for technical assistance. We thank Jelle Matthijnssens and Lander De Coninck (KU Leuven) for sequencing the ZIKV strains and analyzing the results. We thank Alexandre Hego and the imaging platform at Uli\u00E8ge for their grateful technical help. We thank Martijn van Hemert (LUMC), Alain Kohl (MRC-University of Glasgow Centre for Virus Research), Van-Mai Cao-Lormeau (Institut Louis Malard\u00E9), Richard G. Jarman (WRAIR), and Amadou A. Sall (Institut Pasteur Dakar) for kindly providing the ZIKV strains. This work was primarily funded by the European Union\u2019s Horizon 2020 research and innovation program under ZikaPLAN grant agreement no. 734584 (to J.N.) and under ZIKAlliance grant agreement no. 734548 (to J.N.). This work was also supported by the Fonds de la Recherche Scientifique (FNRS-FRIA Ph.D. fellowship to M.D.). The funders had no role in the\u00A0study design, data collection and interpretation, or the decision to submit the work for publication.We thank Prof. Catherine Sadzot-Delvaux (Li\u00E8ge University, Uli\u00E8ge) for her support. We warmly thank Stijn Hendrickx for technical support. We thank Niels Cremers, Elke Maas, Johanna Bouckaert, Jill Swinnen and the staff at the Rega animal facility at KU Leuven for technical assistance. We thank Jelle Matthijnssens and Lander De Coninck (KU Leuven) for sequencing the ZIKV strains and analyzing the results. We thank Alexandre Hego and the imaging platform at Uli\u00E8ge for their grateful technical help. We thank Martijn van Hemert (LUMC), Alain Kohl (MRC-University of Glasgow Centre for Virus Research), Van-Mai Cao-Lormeau (Institut Louis Malard\u00E9), Richard G. Jarman (WRAIR), and Amadou A. Sall (Institut Pasteur Dakar) for kindly providing the ZIKV strains. This work was primarily funded by the European Union\u2019s Horizon 2020 research and innovation program under ZikaPLAN grant agreement no. 734584 (to J.N.) and under ZIKAlliance grant agreement no. 734548 (to J.N.). This work was also supported by the Fonds de la Recherche Scientifique (FNRS-FRIA Ph.D. fellowship to M.D.). The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.
N. Wikan D.R. Smith First published report of Zika virus infection in people: Simpson, not MacNamara Lancet Infect. Dis. 17 15 17 27998553 10.1016/S1473-3099(16)30525-4
World Health Organization. Zika virus. Factsheet. WHO, Geneva, Switzerland. (2022). https://www.who.int/news-room/fact-sheets/detail/zika-virus
J. Morris et al. Prevalence of microcephaly: the Latin American Network of Congenital Malformations 2010-2017 BMJ Paediatr. Open 5 e001235 34901471 8611451 10.1136/bmjpo-2021-001235
D.A. Freitas et al. Congenital Zika syndrome: a systematic review PLoS ONE 15 e0242367 1:CAS:528:DC%2BB3cXis1Ggsr7N 33320867 7737899 10.1371/journal.pone.0242367
I.S. Filgueiras et al. The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations PLoS Negl. Trop. Dis. 15 e0009575 1:CAS:528:DC%2BB3MXhslKqsbjM 34351896 8341629 10.1371/journal.pntd.0009575
F.T. Goodfellow et al. Strain-dependent consequences of Zika virus infection and differential impact on neural development Viruses 10 550 30304805 6212967 10.3390/v10100550
F. Anfasa et al. Phenotypic Differences between Asian and African lineage Zika viruses in human neural progenitor cells mSphere 2 e00292 17 1:CAS:528:DC%2BC1cXhs1SlsbfM 28815211 5555676 10.1128/mSphere.00292-17
F.R. Cugola et al. The Brazilian Zika virus strain causes birth defects in experimental models Nature 534 267 271 2016Natur.534.267C 1:CAS:528:DC%2BC28XpsFClsLc%3D 27279226 4902174 10.1038/nature18296
P.P. Garcez et al. Zika virus impairs growth in human neurospheres and brain organoids Science 352 816 818 2016Sci..352.816G 1:CAS:528:DC%2BC28XnsVynsr8%3D 27064148 10.1126/science.aaf6116
C. Li et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice Cell Stem Cell 19 120 126 1:CAS:528:DC%2BC28XnslGqtro%3D 27179424 10.1016/j.stem.2016.04.017
C. Manet et al. Zika virus infection of mature neurons from immunocompetent mice generates a disease-associated microglia and a tauopathy-like phenotype in link with a delayed interferon beta response J. Neuroinflamm. 19 1:CAS:528:DC%2BB3sXhtFGqsg%3D%3D 10.1186/s12974-022-02668-8 307
A.A. Sher K.K.M. Glover K.M. Coombs Zika virus infection disrupts astrocytic proteins involved in synapse control and axon guidance Front. Microbiol. 10 596 30984137 6448030 10.3389/fmicb.2019.00596
M. Stefanik et al. Characterisation of Zika virus infection in primary human astrocytes BMC Neurosci. 19 29463209 5820785 10.1186/s12868-018-0407-2 5
E.I. Rubio-Hernández et al. Astrocytes derived from neural progenitor cells are susceptible to Zika virus infection PLoS ONE 18 e0283429 36989308 10057746 10.1371/journal.pone.0283429
J. Chen et al. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling Nat. Microbiol. 3 302 309 1:CAS:528:DC%2BC1cXhvFCkurY%3D 29379210 10.1038/s41564-017-0092-4
D. Limonta et al. Human fetal astrocytes infected with Zika virus exhibit delayed apoptosis and resistance to interferon: implications for persistence Viruses 10 646 1:CAS:528:DC%2BC1MXhtFehtrbE 30453621 6266559 10.3390/v10110646
V. Schultz et al. Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications Glia 69 2023 2036 1:CAS:528:DC%2BB38Xjs1yhtr0%3D 33942402 9216243 10.1002/glia.24010
C. Li et al. Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice Cell Discov. 4 43 30083387 6066496 10.1038/s41421-018-0042-1
V. Schultz et al. Zika virus infection leads to demyelination and axonal injury in mature CNS Cultures Viruses 13 91 1:CAS:528:DC%2BB3MXislartr8%3D 33440758 7827345 10.3390/v13010091
F.M. Lum et al. Zika virus infects human fetal brain microglia and induces inflammation Clin. Infect. Dis. 64 914 920 1:CAS:528:DC%2BC1cXitFalu7zJ 28362944 10.1093/cid/ciw878
P. Xu et al. Role of microglia in the dissemination of Zika virus from mother to fetal brain PLoS Negl. Trop. Dis. 14 e0008413 32628667 7365479 10.1371/journal.pntd.0008413
F. Diop et al. Zika virus infection modulates the metabolomic profile of microglial cells PLoS ONE 13 e0206093 30359409 6201926 10.1371/journal.pone.0206093
M.D.P. Martinez Viedma B.E. Pickett Characterizing the different effects of Zika virus infection in placenta and microglia cells Viruses 10 649 30453684 6266000 10.3390/v10110649
J. Dang et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3 Cell Stem Cell 19 258 265 1:CAS:528:DC%2BC28XnsV2nu7g%3D 27162029 5116380 10.1016/j.stem.2016.04.014
H. Li et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation Cell Stem Cell 19 593 598 1:CAS:528:DC%2BC28Xhtlyjtb3E 27545505 5097023 10.1016/j.stem.2016.08.005
E. Gabriel et al. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids Cell Stem Cell 20 397 406.e5 1:CAS:528:DC%2BC2sXhs1KntLo%3D 28132835 10.1016/j.stem.2016.12.005
I. Gladwyn-Ng et al. Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly Nat. Neurosci. 21 63 71 29230053 10.1038/s41593-017-0038-4
M. Saade et al. Multimerization of Zika Virus-NS5 causes ciliopathy and forces premature neurogenesis Cell Stem Cell 27 920 936.e8 1:CAS:528:DC%2BB3cXit1GjsL7E 33147489 7718408 10.1016/j.stem.2020.10.002
Plociennikowska et al. TLR3 activation by Zika virus stimulates inflammatory cytokine production which dampens the antiviral response induced by RIG-I-like receptors J. Virol. 95 e01050 20 1:CAS:528:DC%2BB3MXht1ensrnM 33658344 8139665 10.1128/JVI.01050-20
G.U. Jeong et al. Zika virus infection induces Interleukin-1β-Mediated Inflammatory responses by macrophages in the brain of an adult mouse model J. Virol. 97 e0055623 37191498 10.1128/jvi.00556-23
T. Hu J. Li M.J. Carr S. Duchêne W. Shi The Asian lineage of Zika Virus: transmission and evolution in Asia and the Americas Virol. Sin. 34 1 8 30684211 6420435 10.1007/s12250-018-0078-2
J.H.O. Pettersson et al. How did Zika virus emerge in the Pacific Islands and Latin America? MBio 7 e01239 16 27729507 5061869 10.1128/mBio.01239-16
M.A. Sheridan et al. Vulnerability of primitive human placental trophoblast to Zika virus Proc. Natl Acad. Sci. USA 114 E1587 E1596 1:CAS:528:DC%2BC2sXisFSjt7o%3D 28193876 5338554 10.1073/pnas.1616097114
J.R. Rosinski et al. Frequent first-trimester pregnancy loss in rhesus macaques infected with African-lineage Zika virus PLoS Pathog. 19 e1011282 10.1371/journal.ppat.1011282
S. Tripathi et al. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses PLoS Pathog. 13 e1006258 3680271 28278235 5373643 10.1371/journal.ppat.1006258
A.S. Jaeger et al. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission PLoS Negl. Trop. Dis. 13 e0007343 30995223 6488094 10.1371/journal.pntd.0007343
Q. Shao et al. The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus Development 144 4114 4124 1:CAS:528:DC%2BC1cXpvVWhs7s%3D 28993398 5719247
D.R. Smith et al. African and Asian Zika virus isolates display phenotypic differences both in vitro and in vivo Am. J. Trop. Med. Hyg. 98 432 444 1:CAS:528:DC%2BC1cXitFymurfM 29280428 10.4269/ajtmh.17-0685
N.K. Duggal et al. Differential neurovirulence of African and Asian genotype Zika virus isolates in outbred immunocompetent mice Am. J. Trop. Med. Hyg. 97 1410 1417 1:CAS:528:DC%2BC1cXitV2lsLfN 28820694 5817768 10.4269/ajtmh.17-0263
F. Aubry et al. Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains Nat. Commun. 12 2021NatCo.12.916A 1:CAS:528:DC%2BB3MXjvFKns7s%3D 33568638 7876148 10.1038/s41467-021-21199-z 916
L. Yuan et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly Science 358 933 936 2017Sci..358.933Y 1:CAS:528:DC%2BC2sXhvVSis77P 28971967 10.1126/science.aam7120
C.S. Lin et al. A reverse mutation E143K within the PrM protein of Zika virus asian lineage natal RGN strain increases infectivity and cytopathicity Viruses 14 1572 1:CAS:528:DC%2BB38XhvF2isr3I 35891552 9317194 10.3390/v14071572
C. Shan et al. A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission Proc. Natl Acad. Sci. USA 117 20190 20197 2020PNAS.11720190S 1:CAS:528:DC%2BB3cXhs1ehtb%2FP 32747564 7443865 10.1073/pnas.2005722117
T. Inagaki et al. Leu-to-Phe substitution at prM146 decreases the growth ability of Zika virus and partially reduces its pathogenicity in mice Sci. Rep. 11 2021NatSR.1119635I 1:CAS:528:DC%2BB3MXitFKqt7%2FJ 34608212 8490429 10.1038/s41598-021-99086-2 19635
H. Xia et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction Nat. Commun. 9 2018NatCo..9.414X 29379028 5788864 10.1038/s41467-017-02816-2 414
D.L. Carbaugh et al. Two genetic differences between closely related Zika virus strains determine pathogenic outcome in mice J. Virol. 94 e00618 e00620 1:CAS:528:DC%2BB3cXitV2jt7fI 32796074 7527068 10.1128/JVI.00618-20
Z.A. Klase et al. Zika fetal neuropathogenesis: etiology of a viral syndrome PLoS Negl. Trop. Dis. 10 e0004877 27560129 4999274 10.1371/journal.pntd.0004877
F. Stagni A. Giacomini S. Guidi E. Ciani R. Bartesaghi Timing of therapies for Down syndrome: the sooner, the better Front. Behav. Neurosci. 9 265 26500515 4594009 10.3389/fnbeh.2015.00265
F. Aubry et al. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons J. Gen. Virol. 95 2462 2467 25053561 4202267 10.1099/vir.0.068023-0
V. Duong P. Dussart P. Buchy Zika virus in Asia Int. J. Infect. Dis. 54 121 128 27939768 10.1016/j.ijid.2016.11.420
A. Biswas et al. Zika outbreak in India in 2018 J. Travel Med. 27 taaa001 10.1093/jtm/taaa001
S.C. Weaver et al. Zika virus: History, emergence, biology, and prospects for control Antiviral Res. 130 69 80 1:CAS:528:DC%2BC28XlvVamsLw%3D 26996139 4851879 10.1016/j.antiviral.2016.03.010
World Health Organization. Zika - Epidemiological Update - 25 Aug 2017. https://www.paho.org/en/documents/25-august-2017-zika-epidemiological-update-0
P. Brasil et al. Zika virus infection in pregnant women in Rio de Janeiro N. Engl. J. Med. 375 2321 2334 26943629 5323261 10.1056/NEJMoa1602412
R. Grant et al. In utero Zika virus exposure and neurodevelopment at 24 months in toddlers normocephalic at birth: a cohort study BMC Med. 19 33472606 7819189 10.1186/s12916-020-01888-0 12
M.R. Abtibol-Bernardino et al. Neurological findings in children without congenital microcephaly exposed to Zika virus in utero: a case series study Viruses 12 1335 33233769 7699969 10.3390/v12111335
M. Sarno et al. Zika virus infection and stillbirths: a case of hydrops fetalis, hydranencephaly and fetal demise PLoS Negl. Trop. Dis. 10 e0004517 26914330 4767410 10.1371/journal.pntd.0004517
Stanford Medicine Children’s Health. Hydrops Fetalis (2023). https://www.stanfordchildrens.org/en/topic/default?id=hydrops-fetalis-90-P02374
S. Cauchemez et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study Lancet 387 2125 2132 26993883 4909533 10.1016/S0140-6736(16)00651-6
R.W. Driggers et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities N. Engl. J. Med. 374 2142 2151 1:CAS:528:DC%2BC28XhtlOltb%2FL 27028667 10.1056/NEJMoa1601824
M. Sochocka B.S. Diniz J. Leszek Inflammatory response in the CNS: friend or foe? Mol. Neurobiol. 54 8071 8089 1:CAS:528:DC%2BC28XhvFCiurrL 27889895 10.1007/s12035-016-0297-1
Y.S. Kim T.H. Joh Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease Exp. Mol. Med. 38 333 347 1:CAS:528:DC%2BD28XpsFKnur0%3D 16953112 10.1038/emm.2006.40
J.M. Tatara et al. Differential proteomics of Zika virus (ZIKV) infection reveals molecular changes potentially involved in immune system evasion by a Brazilian strain of ZIKV Arch. Virol. 168 70 1:CAS:528:DC%2BB3sXhslGru7g%3D 36658439 10.1007/s00705-022-05629-x
K. Esser-Nobis et al. Comparative analysis of African and Asian Lineage-Derived Zika virus strains reveals differences in activation of and sensitivity to antiviral innate immunity J. Virol. 93 e00640 19 1:CAS:528:DC%2BC1MXhvFWhtLzK 31019057 6580957 10.1128/JVI.00640-19
Z. Liu et al. A single nonsynonymous mutation on ZIKV E protein-coding sequences leads to markedly increased neurovirulence in vivo Virol. Sin. 37 115 126 1:CAS:528:DC%2BB3sXht1Wrsrc%3D 35234632 8922429 10.1016/j.virs.2022.01.021
I. Gladwyn-Ng et al. Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly Nat. Neurosci. 21 63 73 1:CAS:528:DC%2BC1cXltVyiur4%3D 29230053 10.1038/s41593-017-0038-4
A. Kolimenakis et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit-A systematic review PLoS Negl. Trop. Dis. 15 e0009631 34499653 8428665 10.1371/journal.pntd.0009631
M.U.G. Kraemer et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus Nat. Microbiol. 4 854 863 1:CAS:528:DC%2BC1MXmsV2isr8%3D 30833735 6522366 10.1038/s41564-019-0376-y
Y. Shi P. Kirwan F.J. Livesey Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks Nat. Protoc. 7 1836 1846 1:CAS:528:DC%2BC38XhtleqtLfF 22976355 10.1038/nprot.2012.116
S. van Boheemen et al. Quasispecies composition and evolution of a typical Zika virus clinical isolate from Suriname Sci. Rep. 7 2017NatSR..7.2368V 28539654 5443807 10.1038/s41598-017-02652-w 2368
C.L. Donald et al. Full genome sequence and sfRNA interferon antagonist activity of Zika virus from recife, Brazil PLoS Negl. Trop. Dis. 10 e0005048 27706161 5051680 10.1371/journal.pntd.0005048
D.B. Kum et al. A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice npj Vaccines 3 1:CAS:528:DC%2BC1MXhtFKkt7fK 30564463 6292895 10.1038/s41541-018-0092-2 56
N. Conceição-Neto et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis Sci. Rep. 5 2015NatSR..516532C 26559140 4642273 10.1038/srep16532 16532
De Coninck, L., Faye, L., Basler, N., Jansen, D. & Van Espen, L. ViPER. Zenodo (2024). https://doi.org/10.5281/zenodo.5502203
A.M. Bolger M. Lohse B. Usadel Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics 30 2114 2120 1:CAS:528:DC%2BC2cXht1Sqt7nP 24695404 4103590 10.1093/bioinformatics/btu170
S. Nurk D. Meleshko A. Korobeynikov P.A. Pevzner metaSPAdes: a new versatile metagenomic assembler Genome Res. 27 824 834 1:CAS:528:DC%2BC2sXhtFyjsrrJ 28298430 5411777 10.1101/gr.213959.116
L.J. Reed H. Muench A simple method of estimating fifty per cent endpoints Am. J. Epidemiol. 27 493 497 10.1093/oxfordjournals.aje.a118408