climate change; forest affinity; forest management; herbaceous layer; microclimate buffering; mosses and liverworts; plant–climate interactions; species response curves; temperature extremes; understorey floristic communities; Ecology, Evolution, Behavior and Systematics; Ecology; Plant Science
Abstract :
[en] With recent advances in technology and modelling, ecologists are increasingly advised to use microclimate, not the usual coarse scale macroclimate based on weather stations, to better reflect the proximal conditions that species experience. This is especially relevant in forest ecosystems, where natural disturbances and management create substantial heterogeneity in microclimates. Under dense canopies, species may experience buffered (less extreme) microclimate temperatures relative to macroclimate, as well as increased relative humidity, reduced light and wind. Focusing on understorey plants, we investigated species response curves to the buffering capacity of the canopy layer, measured as the log-transformed slope parameter of the microclimate to macroclimate linear relationship. If lower or higher than zero, microclimate temperatures are buffered or amplified, respectively, relative to macroclimate. During leaf-on conditions (July–September 2021), we measured hourly microclimate temperatures in 157 plots across three temperate deciduous forests with contrasted macroclimates. We used paired hourly macroclimate measurements from nearby weather stations to derive the slope parameter, quantifying microclimate buffering. We surveyed vascular plant and bryophyte communities in 400 m2 plots centred on our microclimate sensors. Species were classified into three groups of forest affinity: core specialists; edge specialists; and generalists. We fitted generalized linear mixed-effects models, by forest affinity group and by species, to obtain logistic response curves of the probability of occurrence against microclimate buffering. The species' optimum was computed as the microclimate effect that maximizes the species' probability of presence. We found contrasted microclimate preferences: Most bryophytes as well as the vascular plants classified as forest core specialists had an optimum in microclimate buffering, while forest edge specialists and generalists among vascular plants had an optimum in microclimate amplification. As canopies undergo increased disturbance frequency and intensity, more generalists and less forest core specialists might thus be expected in understorey communities, especially for bryophytes. Synthesis. Understorey plants have a species-specific affinity to the forest microclimate, which we quantify for the first time. The investigation of species response curves to microclimate processes—buffering or amplification—can improve our understanding of the ecology of understorey plants, and help us anticipate their redistribution under climate change.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Gril, Eva ; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Spicher, Fabien; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Vanderpoorten, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée)
Gallet-Moron, Emilie; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Brasseur, Boris; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Le Roux, Vincent; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Laslier, Marianne; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Decocq, Guillaume ; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Marrec, Ronan ; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Lenoir, Jonathan ; UMR CNRS 7058 “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), Université de Picardie Jules Verne, Amiens, France
Language :
English
Title :
The affinity of vascular plants and bryophytes to forest microclimate buffering
ANR - Agence Nationale de la Recherche CNRS - Centre National de la Recherche Scientifique
Funding text :
We deeply thank the interns who contributed to data collection in the field: Hugo Mahier, Germain Vital, Ambre Ch\u00E2line, Soline Chaudet and Hugo Hay\u00E9. We also thank the French National Forest Office (ONF) and all ONF agents who helped with the project. J.L. acknowledges funding from the Centre National de la Recherche Scientifique (CNRS), under the framework of the Mission pour les Initiatives Transverses et Interdisciplinaires (MITI, D\u00E9fi INFINITI 2018: MORFO project) and the Agence Nationale de la Recherche (ANR), under the framework of the young investigators' funding scheme (JCJC Grant N\u00B0ANR\u201019\u2010CE32\u20100005\u201001: IMPRINT project), which funded E.G.'s PhD, and the collaborative research program funding scheme (PRC Grant N\u00B0ANR\u201021\u2010CE32\u20100012\u201003: MaCCMic project), as well as the R\u00E9gion Hauts\u2010de\u2010France, Minist\u00E8re de l'Enseignement Sup\u00E9rieur et de la Recherche and the European Fund for Regional Economic Development for their financial support to the CPER ECRIN program. Finally, we thank the two anonymous reviewers, whose comments notably improved this manuscript.
Alessandrini, C., Scridel, D., Boitani, L., Pedrini, P., & Brambilla, M. (2022). Remotely sensed variables explain microhabitat selection and reveal buffering behaviours against warming in a climate-sensitive bird species. Remote Sensing in Ecology and Conservation, 8(5), 615–628. https://doi.org/10.1002/rse2.265
Aussenac, G. (2000). Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Annals of Forest Science, 57(3), 287–301. https://doi.org/10.1051/forest:2000119
Austin, M. P. (1980). Searching for a model for use in vegetation analysis. Vegetatio, 42(1), 11–21. https://doi.org/10.1007/BF00048865
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01
Bernhardt-Römermann, M., Poschlod, P., & Hentschel, J. (2018). BryForTrait—A life-history trait database of forest bryophytes. Journal of Vegetation Science, 29(4), 798–800. https://doi.org/10.1111/jvs.12646
Blonder, B., Both, S., Coomes, D. A., Elias, D., Jucker, T., Kvasnica, J., Majalap, N., Malhi, Y. S., Milodowski, D., Riutta, T., & Svátek, M. (2018). Extreme and highly heterogeneous microclimates in selectively logged tropical forests. Frontiers in Forests and Global Change, 1. https://doi.org/10.3389/ffgc.2018.00005
Boch, S., Prati, D., Müller, J., Socher, S., Baumbach, H., Buscot, F., Gockel, S., Hemp, A., Hessenmöller, D., Kalko, E. K. V., Linsenmair, K. E., Pfeiffer, S., Pommer, U., Schöning, I., Schulze, E.-D., Seilwinder, C., Weisser, W. W., Wells, K., & Fischer, M. (2013). High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic and Applied Ecology, 14(6), 496–505. https://doi.org/10.1016/j.baae.2013.06.001
Borderieux, J., Gégout, J.-C., & Serra-Diaz, J. M. (2023). High landscape-scale forest cover favours cold-adapted plant communities in agriculture–forest mosaics. Global Ecology and Biogeography, 32(6), 893–903. https://doi.org/10.1111/geb.13676
Bramer, I., Anderson, B. J., Bennie, J., Bladon, A. J., De Frenne, P., Hemming, D., Hill, R. A., Kearney, M. R., Körner, C., Korstjens, A. H., Lenoir, J., Maclean, I. M. D., Marsh, C. D., Morecroft, M. D., Ohlemüller, R., Slater, H. D., Suggitt, A. J., Zellweger, F., & Gillingham, P. K. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. In D. A. Bohan, A. J. Dumbrell, G. Woodward, & M. Jackson (Eds.), Advances in ecological research (Vol. 58, pp. 101–161). Academic Press. https://doi.org/10.1016/bs.aecr.2017.12.005
Carnicer, J., Stefanescu, C., Vives-Ingla, M., López, C., Cortizas, S., Wheat, C., Vila, R., Llusià, J., & Peñuelas, J. (2019). Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics. Journal of Animal Ecology, 88(3), 376–391. https://doi.org/10.1111/1365-2656.12933
Caron, M. M., Zellweger, F., Verheyen, K., Baeten, L., Hédl, R., Bernhardt-Römermann, M., Berki, I., Brunet, J., Decocq, G., Díaz, S., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Lenoir, J., Macek, M., Malicki, M., Máliš, F., … De Frenne, P. (2021). Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 109(11), 3944–3957. https://doi.org/10.1111/1365-2745.13773
Chabot, B. F., & Chabot, J. F. (1977). Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia, 26(4), 363–377. https://doi.org/10.1007/BF00345535
Chelli, S., Ottaviani, G., Simonetti, E., Campetella, G., Wellstein, C., Bartha, S., Cervellini, M., & Canullo, R. (2021). Intraspecific variability of specific leaf area fosters the persistence of understorey specialists across a light availability gradient. Plant Biology, 23(1), 212–216. https://doi.org/10.1111/plb.13199
Christiansen, D. M., Iversen, L. L., Ehrlén, J., & Hylander, K. (2022). Changes in forest structure drive temperature preferences of boreal understorey plant communities. Journal of Ecology, 110(3), 631–643. https://doi.org/10.1111/1365-2745.13825
Christiansen, D. M., Strydom, T., Greiser, C., McClory, R., Ehrlén, J., & Hylander, K. (2023). Effects of past and present microclimates on northern and southern plant species in a managed forest landscape. Journal of Vegetation Science, 34(4), e13197. https://doi.org/10.1111/jvs.13197
Cubino, J. P., Biurrun, I., Bonari, G., Braslavskaya, T., Font, X., Jandt, U., Jansen, F., Rašomavičius, V., Škvorc, Ž., Willner, W., & Chytrý, M. (2021). The leaf economic and plant size spectra of European forest understory vegetation. Ecography, 44(9), 1311–1324. https://doi.org/10.1111/ecog.05598
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., Pauw, K. D., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279–2297. https://doi.org/10.1111/gcb.15569
De Frenne, P., Rodríguez-Sánchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellend, M., Bernhardt-Römermann, M., Brown, C. D., Brunet, J., Cornelis, J., Decocq, G. M., Dierschke, H., Eriksson, O., Gilliam, F. S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M. A., … Verheyen, K. (2013). Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18561–18565. https://doi.org/10.1073/pnas.1311190110
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744–749. https://doi.org/10.1038/s41559-019-0842-1
De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K., Lembrechts, J., Rodríguez-Sánchez, F., Luoto, M., Scheffers, B., Haesen, S., Aalto, J., Christiansen, D. M., De Pauw, K., Depauw, L., Govaert, S., Greiser, C., Hampe, A., Hylander, K., Klinges, D., Koelemeijer, I., … De Frenne, P. (2022). Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 810, 151338. https://doi.org/10.1016/j.scitotenv.2021.151338
De Pauw, K., Sanczuk, P., Meeussen, C., Depauw, L., De Lombaerde, E., Govaert, S., Vanneste, T., Brunet, J., Cousins, S. A. O., Gasperini, C., Hedwall, P.-O., Iacopetti, G., Lenoir, J., Plue, J., Selvi, F., Spicher, F., Uria-Diez, J., Verheyen, K., Vangansbeke, P., & De Frenne, P. (2022). Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 233(1), 219–235. https://doi.org/10.1111/nph.17803
Decocq, G., Aubert, M., Dupont, F., Alard, D., Saguez, R., Wattez-Franger, A., Foucault, B. D., Delelis-Dusollier, A., & Bardat, J. (2004). Plant diversity in a managed temperate deciduous forest: Understorey response to two silvicultural systems. Journal of Applied Ecology, 41(6), 1065–1079. https://doi.org/10.1111/j.0021-8901.2004.00960.x
Decocq, G., & Hermy, M. (2003). Are there herbaceous dryads in temperate deciduous forest? Acta Botanica Gallica: Bulletin de La Société Botanique de France, 150, 373–382. https://doi.org/10.1080/12538078.2003.10516006
Depauw, L., Hu, R., Dhungana, K. S., Govaert, S., Meeussen, C., Vangansbeke, P., Strimbeck, R., Graae, B. J., & De Frenne, P. (2022). Functional trait variation of Anemone nemorosa along macro- and microclimatic gradients close to the northern range edge. Nordic Journal of Botany, 2022(4), e03471. https://doi.org/10.1111/njb.03471
Depauw, L., Perring, M. P., Landuyt, D., Maes, S. L., Blondeel, H., Lombaerde, E. D., Brūmelis, G., Brunet, J., Closset-Kopp, D., Decocq, G., Ouden, J. D., Härdtle, W., Hédl, R., Heinken, T., Heinrichs, S., Jaroszewicz, B., Kopecký, M., Liepiņa, I., Macek, M., … Verheyen, K. (2021). Evaluating structural and compositional canopy characteristics to predict the light-demand-signature of the forest understorey in mixed, semi-natural temperate forests. Applied Vegetation Science, 24(1), e12532. https://doi.org/10.1111/avsc.12532
Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B., Rosenvald, R., Beese, W., Franklin, J. F., Kouki, J., Macdonald, E., Messier, C., Sverdrup-Thygeson, A., & Gustafsson, L. (2014). REVIEW: Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology, 51(6), 1669–1679. https://doi.org/10.1111/1365-2664.12289
Fenton, N. J., & Frego, K. A. (2005). Bryophyte (moss and liverwort) conservation under remnant canopy in managed forests. Biological Conservation, 122(3), 417–430. https://doi.org/10.1016/j.biocon.2004.09.003
Finocchiaro, M., Médail, F., Saatkamp, A., Diadema, K., Pavon, D., & Meineri, E. (2023). Bridging the gap between microclimate and microrefugia: A bottom-up approach reveals strong climatic and biological offsets. Global Change Biology, 29(4), 1024–1036. https://doi.org/10.1111/gcb.16526
Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., & Betts, M. G. (2016). Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances, 2(4), e1501392. https://doi.org/10.1126/sciadv.1501392
Furness, S. B., & Grime, J. P. (1982). Growth rate and temperature responses in bryophytes: II. A comparative study of species of contrasted ecology. Journal of Ecology, 70(2), 525–536. https://doi.org/10.2307/2259920
Gardner, A. S., Maclean, I. M. D., & Gaston, K. J. (2019). Climatic predictors of species distributions neglect biophysiologically meaningful variables. Diversity and Distributions, 25(8), 1318–1333. https://doi.org/10.1111/ddi.12939
Gasperini, C., Carrari, E., Govaert, S., Meeussen, C., De Pauw, K., Plue, J., Sanczuk, P., Vanneste, T., Vangansbeke, P., Jacopetti, G., De Frenne, P., & Selvi, F. (2021). Edge effects on the realised soil seed bank along microclimatic gradients in temperate European forests. Science of the Total Environment, 798, 149373. https://doi.org/10.1016/j.scitotenv.2021.149373
George, A. D., Thompson, F. R., & Faaborg, J. (2015). Using LiDAR and remote microclimate loggers to downscale near-surface air temperatures for site-level studies. Remote Sensing Letters, 6(12), 924–932. https://doi.org/10.1080/2150704X.2015.1088671
Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate Forest ecosystems. Bioscience, 57(10), 845–858. https://doi.org/10.1641/B571007
Giroux, A., Ortega, Z., Attias, N., Desbiez, A. L. J., Valle, D., Börger, L., & Rodrigues Oliveira-Santos, L. G. (2023). Activity modulation and selection for forests help giant anteaters to cope with temperature changes. Animal Behaviour, 201, 191–209. https://doi.org/10.1016/j.anbehav.2023.04.008
Godefroid, S., Rucquoij, S., & Koedam, N. (2006). Spatial variability of summer microclimates and plant species response along transects within clearcuts in a beech forest. Plant Ecology, 185(1), 107–121. https://doi.org/10.1007/s11258-005-9088-x
Govaert, S., Meeussen, C., Vanneste, T., Bollmann, K., Brunet, J., Cousins, S. A. O., Diekmann, M., Graae, B. J., Hedwall, P.-O., Heinken, T., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Perring, M. P., Ponette, Q., Plue, J., Selvi, F., Spicher, F., … De Frenne, P. (2020). Edge influence on understorey plant communities depends on forest management. Journal of Vegetation Science, 31(2), 281–292. https://doi.org/10.1111/jvs.12844
Govaert, S., Vangansbeke, P., Blondeel, H., Steppe, K., Verheyen, K., & De Frenne, P. (2021). Rapid thermophilization of understorey plant communities in a 9 year-long temperate forest experiment. Journal of Ecology, 109(6), 2434–2447. https://doi.org/10.1111/1365-2745.13653
Greiser, C., Ehrlén, J., Luoto, M., Meineri, E., Merinero, S., Willman, B., & Hylander, K. (2021). Warm range margin of boreal bryophytes and lichens not directly limited by temperatures. Journal of Ecology, 109(10), 3724–3736. https://doi.org/10.1111/1365-2745.13750
Greiser, C., Meineri, E., Luoto, M., Ehrlén, J., & Hylander, K. (2018). Monthly microclimate models in a managed boreal forest landscape. Agricultural and Forest Meteorology, 250–251, 147–158. https://doi.org/10.1016/j.agrformet.2017.12.252
Gril, E., Laslier, M., Gallet-Moron, E., Durrieu, S., Spicher, F., Le Roux, V., Brasseur, B., Haesen, S., Van Meerbeek, K., Decocq, G., Marrec, R., & Lenoir, J. (2023). Using airborne LiDAR to map forest microclimate temperature buffering or amplification. Remote Sensing of Environment, 298, 113820. https://doi.org/10.1016/j.rse.2023.113820
Gril, E., Spicher, F., Greiser, C., Ashcroft, M. B., Pincebourde, S., Durrieu, S., Nicolas, M., Richard, B., Decocq, G., Marrec, R., & Lenoir, J. (2023). Slope and equilibrium: A parsimonious and flexible approach to model microclimate. Methods in Ecology and Evolution, 14(3), 885–897. https://doi.org/10.1111/2041-210X.14048
Gril, E., Spicher, F., Vanderpoorten, A., Gallet-Moron, E., Brasseur, B., Le Roux, V., Laslier, M., Decocq, G., Marrec, R., & Lenoir, J. (2024). Responses of vascular plants and bryophytes to forest microclimate buffering. figshare. https://doi.org/10.6084/m9.figshare.25358488.v2
Haesen, S., Lembrechts, J. J., De Frenne, P., Lenoir, J., Aalto, J., Ashcroft, M. B., Kopecký, M., Luoto, M., Maclean, I., Nijs, I., Niittynen, P., van den Hoogen, J., Arriga, N., Brůna, J., Buchmann, N., Čiliak, M., Collalti, A., De Lombaerde, E., Descombes, P., … Van Meerbeek, K. (2023). ForestClim—Bioclimatic variables for microclimate temperatures of European forests. Global Change Biology, 29(11), 2886–2892. https://doi.org/10.1111/gcb.16678
Haesen, S., Lenoir, J., Gril, E., De Frenne, P., Lembrechts, J. J., Kopecký, M., Macek, M., Man, M., Wild, J., & Van Meerbeek, K. (2023). Microclimate reveals the true thermal niche of forest plant species. Ecology Letters, 26(12), 2043–2055. https://doi.org/10.1111/ele.14312
He, X., He, K. S., & Hyvönen, J. (2016). Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49–60. https://doi.org/10.1016/j.ppees.2016.02.005
Heinken, T., Diekmann, M., Liira, J., Orczewska, A., Schmidt, M., Brunet, J., Chytrý, M., Chabrerie, O., Decocq, G., De Frenne, P., Dřevojan, P., Dzwonko, Z., Ewald, J., Feilberg, J., Graae, B. J., Grytnes, J.-A., Hermy, M., Kriebitzsch, W.-U., Laiviņš, M., … Vanneste, T. (2022). The European Forest Plant species list (EuForPlant): Concept and applications. Journal of Vegetation Science, 33(3), e13132. https://doi.org/10.1111/jvs.13132
Hofmeister, J., Hošek, J., Brabec, M., Střalková, R., Mýlová, P., Bouda, M., Pettit, J. L., Rydval, M., & Svoboda, M. (2019). Microclimate edge effect in small fragments of temperate forests in the context of climate change. Forest Ecology and Management, 448, 48–56. https://doi.org/10.1016/j.foreco.2019.05.069
Hylander, K. (2005). Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. Journal of Applied Ecology, 42(3), 518–525. https://doi.org/10.1111/j.1365-2664.2005.01033.x
Hylander, K., Greiser, C., Christiansen, D. M., & Koelemeijer, I. A. (2022). Climate adaptation of biodiversity conservation in managed forest landscapes. Conservation Biology, 36(3), e13847. https://doi.org/10.1111/cobi.13847
Hylander, K., Jonsson, B. G., & Nilsson, C. (2002). Evaluating buffer strips along boreal streams using bryophytes as indicators. Ecological Applications, 12(3), 797–806. https://doi.org/10.1890/1051-0761(2002)012[0797:EBSABS]2.0.CO;2
Joly, D., Brossard, T., Cardot, H., Cavailhes, J., Hilal, M., & Wavresky, P. (2010). Les types de climats en France, une construction spatiale. Cybergeo: European. Journal of Geography. https://doi.org/10.4000/cybergeo.23155
Klinges, D. H., Baecher, J. A., Lembrechts, J. J., Maclean, I. M. D., Lenoir, J., Greiser, C., Ashcroft, M., Evans, L. J., Kearney, M. R., Aalto, J., Barrio, I. C., De Frenne, P., Guillemot, J., Hylander, K., Jucker, T., Kopecký, M., Luoto, M., Macek, M., Nijs, I., … Scheffers, B. R. (2024). Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions. Global Ecology and Biogeography, 33, e13884. https://doi.org/10.1111/geb.13884
Koelemeijer, I. A., Ehrlén, J., De Frenne, P., Jönsson, M., Berg, P., & Hylander, K. (2023). Forest edge effects on moss growth are amplified by drought. Ecological Applications, 33(4), e2851. https://doi.org/10.1002/eap.2851
Kovács, B., Tinya, F., & Ódor, P. (2017). Stand structural drivers of microclimate in mature temperate mixed forests. Agricultural and Forest Meteorology, 234–235, 11–21. https://doi.org/10.1016/j.agrformet.2016.11.268
Kutnar, L., Kermavnar, J., & Sabovljević, M. S. (2023). Congruence between vascular plants and bryophytes in response to ecological conditions in sustainably managed temperate forests (taxonomic- and trait-based levels). Plant Ecology, 224, 1001–1014. https://doi.org/10.1007/s11258-023-01357-7
Lancaster, L. T., & Humphreys, A. M. (2020). Global variation in the thermal tolerances of plants. National Academy of Sciences of the United States of America, 117, 13580–13587. https://doi.org/10.1073/pnas.1918162117
Landuyt, D., Lombaerde, E. D., Perring, M. P., Hertzog, L. R., Ampoorter, E., Maes, S. L., Frenne, P. D., Ma, S., Proesmans, W., Blondeel, H., Sercu, B. K., Wang, B., Wasof, S., & Verheyen, K. (2019). The functional role of temperate forest understorey vegetation in a changing world. Global Change Biology, 25(11), 3625–3641. https://doi.org/10.1111/gcb.14756
Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider, S., Pellissier, L., Pauchard, A., Ratier Backes, A., Dimarco, R. D., Nuñez, M. A., Aalto, J., & Nijs, I. (2019). Comparing temperature data sources for use in species distribution models: From in-situ logging to remote sensing. Global Ecology and Biogeography, 28(11), 1578–1596. https://doi.org/10.1111/geb.12974
Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42(7), 1267–1279. https://doi.org/10.1111/ecog.03947
Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J., & Grenouillet, G. (2020). Species better track climate warming in the oceans than on land. Nature Ecology & Evolution, 4(8), Article 8. https://doi.org/10.1038/s41559-020-1198-2
Lenoir, J., Gril, E., Durrieu, S., Horen, H., Laslier, M., Lembrechts, J. J., Zellweger, F., Alleaume, S., Brasseur, B., Buridant, J., Dayal, K., De Frenne, P., Gallet-Moron, E., Marrec, R., Meeussen, C., Rocchini, D., Van Meerbeek, K., & Decocq, G. (2022). Unveil the unseen: Using LiDAR to capture time-lag dynamics in the herbaceous layer of European temperate forests. Journal of Ecology, 110(2), 282–300. https://doi.org/10.1111/1365-2745.13837
Lenoir, J., Hattab, T., & Pierre, G. (2017). Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography, 40(2), 253–266. https://doi.org/10.1111/ecog.02788
Lüdecke, D. (2018). Ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3(26), 772. https://doi.org/10.21105/joss.00772
Lüdecke, D. (2021). sjPlot: Data visualization for statistics in social science [computer software]. https://CRAN.R-project.org/package=sjPlot
Macek, M., Kopecký, M., & Wild, J. (2019). Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landscape Ecology, 34(11), 2541–2556. https://doi.org/10.1007/s10980-019-00903-x
Máliš, F., Ujházy, K., Hederová, L., Ujházyová, M., Csölleová, L., Coomes, D. A., & Zellweger, F. (2023). Microclimate variation and recovery time in managed and old-growth temperate forests. Agricultural and Forest Meteorology, 342, 109722. https://doi.org/10.1016/j.agrformet.2023.109722
Man, M., Wild, J., Macek, M., & Kopecký, M. (2022). Can high-resolution topography and forest canopy structure substitute microclimate measurements? Bryophytes say no. Science of the Total Environment, 821, 153377. https://doi.org/10.1016/j.scitotenv.2022.153377
Marschall, M., & Proctor, M. C. F. (2004). Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany, 94(4), 593–603. https://doi.org/10.1093/aob/mch178
Meeussen, C., Govaert, S., Vanneste, T., Bollmann, K., Brunet, J., Calders, K., Cousins, S. A. O., De Pauw, K., Diekmann, M., Gasperini, C., Hedwall, P.-O., Hylander, K., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Sanczuk, P., … De Frenne, P. (2021). Microclimatic edge-to-interior gradients of European deciduous forests. Agricultural and Forest Meteorology, 311, 108699. https://doi.org/10.1016/j.agrformet.2021.108699
Menge, J. H., Magdon, P., Wöllauer, S., & Ehbrecht, M. (2023). Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests. Landscape Ecology, 38(4), 903–917. https://doi.org/10.1007/s10980-023-01596-z
Mercier, P., Aas, G., & Dengler, J. (2019). Effects of skid trails on understory vegetation in forests: A case study from northern Bavaria (Germany). Forest Ecology and Management, 453, 117579. https://doi.org/10.1016/j.foreco.2019.117579
Merinero, S., Dahlberg, C. J., Ehrlén, J., & Hylander, K. (2020). Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology, 101(5), e02999. https://doi.org/10.1002/ecy.2999
Michalet, R., Nemer, D., & Delerue, F. (2023). Canopy buffering effects against climatic extremes of deciduous broad-leaved forests are higher on calcareous than siliceous bedrocks. Oikos, 2023(5), e09755. https://doi.org/10.1111/oik.09755
Mills, S. E., & Macdonald, S. E. (2005). Factors influencing bryophyte assemblage at different scales in the western Canadian boreal forest. The Bryologist, 108(1), 86–100. https://doi.org/10.1639/0007-2745(2005)108[86:FIBAAD]2.0.CO;2
Moen, J., & Jonsson, B. G. (2003). Edge effects on liverworts and lichens in forest patches in a mosaic of boreal forest and wetland. Conservation Biology, 17(2), 380–388. https://doi.org/10.1046/j.1523-1739.2003.00406.x
Møller, C., De Frenne, P., March-Salas, M., Vanneste, T., Verheyen, K., & Scheepens, J. F. (2023). Forest management drives evolution of understorey herbs. Forest Ecology and Management, 548, 121390. https://doi.org/10.1016/j.foreco.2023.121390
Müller, J., Boch, S., Prati, D., Socher, S. A., Pommer, U., Hessenmöller, D., Schall, P., Schulze, E. D., & Fischer, M. (2019). Effects of forest management on bryophyte species richness in central European forests. Forest Ecology and Management, 432, 850–859. https://doi.org/10.1016/j.foreco.2018.10.019
Naqinezhad, A., De Lombaerde, E., Gholizadeh, H., Wasof, S., Perring, M. P., Meeussen, C., De Frenne, P., & Verheyen, K. (2022). The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Global Change Biology, 28(3), 1103–1118. https://doi.org/10.1111/gcb.15946
Neufeld, H. S., & Young, D. R. (2014). Ecophysiology of the herbaceous layer in temperate deciduous forests. In F. Gilliam (Ed.), The herbaceous layer in forests of eastern North America. Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199837656.003.0003
Niu, S., Luo, Y., Li, D., Cao, S., Xia, J., Li, J., & Smith, M. D. (2014). Plant growth and mortality under climatic extremes: An overview. Environmental and Experimental Botany, 98, 13–19. https://doi.org/10.1016/j.envexpbot.2013.10.004
Normand, S., Treier, U. A., Randin, C., Vittoz, P., Guisan, A., & Svenning, J.-C. (2009). Importance of abiotic stress as a range-limit determinant for European plants: Insights from species responses to climatic gradients. Global Ecology and Biogeography, 18(4), 437–449. https://doi.org/10.1111/j.1466-8238.2009.00451.x
Pellissier, V., Bergès, L., Nedeltcheva, T., Schmitt, M.-C., Avon, C., Cluzeau, C., & Dupouey, J.-L. (2013). Understorey plant species show long-range spatial patterns in forest patches according to distance-to-edge. Journal of Vegetation Science, 24(1), 9–24. https://doi.org/10.1111/j.1654-1103.2012.01435.x
Pincebourde, S., Murdock, C. C., Vickers, M., & Sears, M. W. (2016). Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integrative and Comparative Biology, 56(1), 45–61. https://doi.org/10.1093/icb/icw016
R Core Team. (2021). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
Rita, A., Bonanomi, G., Allevato, E., Borghetti, M., Cesarano, G., Mogavero, V., Rossi, S., Saulino, L., Zotti, M., & Saracino, A. (2021). Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-87661-6
Rolland, C. (2003). Spatial and seasonal variations of air temperature lapse rates in alpine regions. Journal of Climate, 16(7), 1032–1046. https://doi.org/10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2
Román-Palacios, C., & Wiens, J. J. (2020). Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 4211–4217. https://doi.org/10.1073/pnas.1913007117
Rose, F. (1992). Temperate forest management: Its effects on bryophyte and lichen floras and habitats. In J. W. Bates & A. M. Farmer (Eds.), Bryophytes and lichens in a changing environment (pp. 211–233). Oxford Science Publications.
Sanczuk, P., De Lombaerde, E., Haesen, S., Van Meerbeek, K., Luoto, M., Van der Veken, B., Van Beek, E., Hermy, M., Verheyen, K., Vangansbeke, P., & De Frenne, P. (2022). Competition mediates understorey species range shifts under climate change. Journal of Ecology, 110(8), 1813–1825. https://doi.org/10.1111/1365-2745.13907
Sanczuk, P., De Pauw, K., De Lombaerde, E., Luoto, M., Meeussen, C., Govaert, S., Vanneste, T., Depauw, L., Brunet, J., Cousins, S. A. O., Gasperini, C., Hedwall, P.-O., Iacopetti, G., Lenoir, J., Plue, J., Selvi, F., Spicher, F., Uria-Diez, J., Verheyen, K., … De Frenne, P. (2023). Microclimate and forest density drive plant population dynamics under climate change. Nature Climate Change, 13, 840–847. https://doi.org/10.1038/s41558-023-01744-y
Schall, P., Schulze, E.-D., Fischer, M., Ayasse, M., & Ammer, C. (2018). Relations between forest management, stand structure and productivity across different types of central European forests. Basic and Applied Ecology, 32, 39–52. https://doi.org/10.1016/j.baae.2018.02.007
Schmidt, M., Kriebitzsch, W.-U., & Ewald, J. (2011). Waldartenlisten der Farn-und Blütenpflanzen, Moose und Flechten Deutschlands – Einführung und methodische Grundlagen.
Stewart, K. J., & Mallik, A. U. (2006). Bryophyte responses to microclimatic edge effects across riparian buffers. Ecological Applications, 16(4), 1474–1486. https://doi.org/10.1890/1051-0761(2006)016[1474:BRTMEE]2.0.CO;2
Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., & Thomas, C. D. (2011). Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos, 120(1), 1–8.
ter Braak, C. J. F., & Looman, C. W. N. (1986). Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65(1), 3–11. https://doi.org/10.1007/BF00032121
Thom, D., Sommerfeld, A., Sebald, J., Hagge, J., Müller, J., & Seidl, R. (2020). Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agricultural and Forest Meteorology, 291, 108066. https://doi.org/10.1016/j.agrformet.2020.108066
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8245–8250. https://doi.org/10.1073/pnas.0409902102
Tinya, F., Kovács, B., Bidló, A., Dima, B., Király, I., Kutszegi, G., Lakatos, F., Mag, Z., Márialigeti, S., Nascimbene, J., Samu, F., Siller, I., Szél, G., & Ódor, P. (2021). Environmental drivers of forest biodiversity in temperate mixed forests—A multi-taxon approach. Science of the Total Environment, 795, 148720. https://doi.org/10.1016/j.scitotenv.2021.148720
Tinya, F., Kovács, B., Prättälä, A., Farkas, P., Aszalós, R., & Ódor, P. (2019). Initial understory response to experimental silvicultural treatments in a temperate oak-dominated forest. European Journal of Forest Research, 138(1), 65–77. https://doi.org/10.1007/s10342-018-1154-8
Ulrich, E. (1995). The renecofor-network: Objectives and realization. Revue Forestière Française, 47(2), 107–124. https://doi.org/10.4267/2042/26634
Valladares, F., Laanisto, L., Niinemets, Ü., & Zavala, M. A. (2016). Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecology and Diversity, 9(3), 237–251. https://doi.org/10.1080/17550874.2016.1210262
Vanderpoorten, A., Engels, P., & Sotiaux, A. (2004). Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography, 27(5), 567–576. https://doi.org/10.1111/j.0906-7590.2004.03890.x
Vandewiele, M., Geres, L., Lotz, A., Mandl, L., Richter, T., Seibold, S., Seidl, R., & Senf, C. (2023). Mapping spatial microclimate patterns in mountain forests from LiDAR. Agricultural and Forest Meteorology, 341, 109662. https://doi.org/10.1016/j.agrformet.2023.109662
Verheyen, K., & Hermy, M. (2001). An integrated analysis of the spatio-temporal colonization patterns of forest plant species. Journal of Vegetation Science, 12(4), 567–578. https://doi.org/10.2307/3237008
von Arx, G., Pannatier, E. G., Thimonier, A., & Rebetez, M. (2013). Microclimate in forests with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate. Journal of Ecology, 101(5), 1201–1213. https://doi.org/10.1111/1365-2745.12121
Wasof, S., Lenoir, J., Gallet-Moron, E., Jamoneau, A., Brunet, J., Cousins, S. A. O., De Frenne, P., Diekmann, M., Hermy, M., Kolb, A., Liira, J., Verheyen, K., Wulf, M., & Decocq, G. (2013). Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe. Global Ecology and Biogeography, 22(10), 1130–1140. https://doi.org/10.1111/geb.12073
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Woods, H. A., Pincebourde, S., Dillon, M. E., & Terblanche, J. S. (2021). Extended phenotypes: Buffers or amplifiers of climate change? Trends in Ecology & Evolution, 36(10), 889–898. https://doi.org/10.1016/j.tree.2021.05.010
Xu, X., Huang, A., Belle, E., De Frenne, P., & Jia, G. (2022). Protected areas provide thermal buffer against climate change. Science Advances, 8(44), eabo0119. https://doi.org/10.1126/sciadv.abo0119
Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S. L., Wulf, M., Kirby, K. J., Brunet, J., Kopecký, M., Máliš, F., Schmidt, W., Heinrichs, S., den Ouden, J., Jaroszewicz, B., Buyse, G., Spicher, F., Verheyen, K., & Frenne, P. D. (2019). Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography, 28(12), 1774–1786. https://doi.org/10.1111/geb.12991
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Calster, H. V., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772–775. https://doi.org/10.1126/science.aba6880