Antimalarial drug resistance; Democratic Republic of Congo; Malaria; Molecular markers of drug resistance; Mutations; Public Health, Environmental and Occupational Health; Infectious Diseases
Abstract :
[en] [en] CONTEXT: The Democratic Republic of Congo (DRC), one of the most malaria-affected countries worldwide, is a potential hub for global drug-resistant malaria. This study aimed at summarizing and mapping surveys of malaria parasites carrying molecular markers of drug-resistance across the country.
METHODS: A systematic mapping review was carried out before July 2023 by searching for relevant articles through seven databases (PubMed, Embase, Scopus, African Journal Online, African Index Medicus, Bioline and Web of Science).
RESULTS: We identified 1541 primary studies of which 29 fulfilled inclusion criteria and provided information related to 6385 Plasmodium falciparum clinical isolates (collected from 2000 to 2020). We noted the PfCRT K76T mutation encoding for chloroquine-resistance in median 32.1% [interquartile interval, IQR: 45.2] of analyzed malaria parasites. The proportion of parasites carrying this mutation decreased overtime, but wide geographic variations persisted. A single isolate had encoded the PfK13 R561H substitution that is invoked in artemisinin-resistance emergence in the Great Lakes region of Africa. Parasites carrying various mutations linked to resistance to the sulfadoxine-pyrimethamine combination were widespread and reflected a moderate resistance profile (PfDHPS A437G: 99.5% [IQR: 3.9]; PfDHPS K540E: 38.9% [IQR: 47.7]) with median 13.1% [IQR: 10.3] of them being quintuple IRN-GE mutants (i.e., parasites carrying the PfDHFR N51I-C59R-S108N and PfDHPS A437G-K540E mutations). These quintuple mutants tended to prevail in eastern regions of the country. Among circulating parasites, we did not record any parasites harboring mutations related to mefloquine-resistance, but we could suspect those with decreased susceptibility to quinine, amodiaquine, and lumefantrine based on corresponding molecular surrogates.
CONCLUSIONS: Drug resistance poses a serious threat to existing malaria therapies and chemoprevention options in the DRC. This review provides a baseline for monitoring public health efforts as well as evidence for decision-making in support of national malaria policies and for implementing regionally tailored control measures across the country.
Disciplines :
Microbiology
Author, co-author :
Kayiba, Nadine Kalenda; Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium ; Department of Public Health, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo ; Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
Tshibangu-Kabamba, Evariste; Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan ; Department of Internal Medicine, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
Rosas-Aguirre, Angel; Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
Kaku, Natsuko; Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
Nakagama, Yu; Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
Kaneko, Akira; Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
Makaba, Dieudonné Mvumbi; Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo ; Department of Quality of Laboratories, Sciensano, Brussels, Belgium
Malekita, Doudou Yobi; Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
Devleesschauwer, Brecht; Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium ; Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
Likwela, Joris Losimba; Department of Public Health, Faculty of Medicine, University of Kisangani, Kisangani, Democratic Republic of Congo
Zakayi, Pius Kabututu; Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
De Mol, Patrick ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Lelo, Georges Mvumbi; Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
Hayette, Marie-Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Dikassa, Paul Lusamba; School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
Kido, Yasutoshi ; Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan. kidoyasu@omu.ac.jp
Speybroeck, Niko; Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
ARES - Academy for Research and Higher Education JSPS - Japan Society for the Promotion of Science AMED - Japan Agency for Medical Research and Development
Funding text :
NKK received a Ph.D. scholarship under a funding from the Belgian Cooperation Agency through the Academy of Research and Higher Education (ARES). This work also received a support from the Japan Society for the Promotion of Science (JSPS) KAKENHI under grant number JP18KK0454 and the Japan Agency for Medical Research and Development (AMED) under grant numbers JP21wm0125003 and JP19fm0208020 (all to YK).
Ruckstuhl LE, Likwela JL, Lengeler C. Assessing the impact of twentieth century malaria control measures in the Democratic Republic of Congo: a historical epidemiological perspective. In: Malaria surveillance and control in Central Africa: the challenges of instability and access. Basel: University of Basel; 2017.
Lukwikilu LS. Politique coloniale de lutte contre le paludisme. Cas de l’ancienne province de Léopoldville (1888–1960). Kinshasa: Université de Kinshasa RDC; 2011.
Porter D. The history of public health and the modern state. Introduction. Clio Med. 1994;26:1–44.
Duren A. Essai d’etude sur l’importance du paludisme dans la mortalite au Congo Belge. Ann Soc Belge Med Trop. 1951;31:129–47.
Kazadi W, Sexton JD, Bigonsa M, W’Okanga B, Way M. Malaria in primary school children and infants in Kinshasa, Democratic Republic of the Congo: surveys from the 1980s and 2000. In: The Intolerable Burden of Malaria II: What's New, What's Needed: Supplement to Volume 71 (2) of the American Journal of Tropical Medicine and Hygiene. American Society of Tropical Medicine and Hygiene; 2004.
Likwela JL. Lutte antipaludique en République Démocratique du Congo à l’approche de l’échéance des OMD: progrès, défis et perspectives [Éditorial]. Rev méd Gd Lacs. 2014;3(1):149–55.
PNLP. Projet de politique nationale de lutte contre le paludisme. In: Programme National de Lutte contre le Paludisme; 2014.
PNLP. Plan Stratégique National de lutte contre le paludisme 2007–2011. In: Kinshasa, RD Congo: Ministère National de la Santé Publique, Programme de Lutte contre le Paludisme (PNLP); 2011.
Alum A, Andrada A, Archer J, Auko E, Bates K, Bouanchaud P, Bruce M, Camilleri A, Carter E, Chapman S, et al. The malaria testing and treatment market in Kinshasa, Democratic Republic of the Congo, 2013. Malar J. 2017;16(1):94.
Kayiba NK, Yobi DM, Devleesschauwer B, Mvumbi DM, Kabututu PZ, Likwela JL, Kalindula LA, DeMol P, Hayette M-P, Mvumbi GL. Care-seeking behaviour and socio-economic burden associated with uncomplicated malaria in the Democratic Republic of Congo. Malar J. 2021;20(1):260.
Paluku KM, Breman JG, Moore M, Ngimbi NP, Sexton JD, Roy J, Steketee RW, Weinman JM, Kalisa R, ma-Disu M. Response of children with Plasmodium falciparum to chloroquine and development of a national malaria treatment policy in Zaire. Trans R Soc Trop Med Hyg. 1988;82(3):353–7.
Awasthi G, Satya Prasad GB, Das A. Pfcrt haplotypes and the evolutionary history of chloroquine-resistant Plasmodium falciparum. Mem Inst Oswaldo Cruz. 2012;107(1):129–34.
PNLP. Plan Stratégique National de lutte contre le paludisme 2002–2006. In. Kinshasa, RD Congo: Ministère National de la Santé, Programme de Lutte contre le Paludisme (PNLP); 2002.
PNLP. Rapport annuel des activités de lutte contre le paludisme 2013. In: Programme National de Lutte contre le Paludisme; 2013.
PMI. Democratic Republic of the Congo, Malaria Operational Plan FY. In: President's Malaria Initiative (PMI); 2013.
PNLP. Directives nationales de prise en charge du paludisme In. Kinshasa, RD Congo: Ministère de la Santé Publique, Programe National de Lutte contre le Paludisme (PNLP); 2021. pp. 55.
PNLP. Plan Stratégique National de lutte contre le paludisme 2016–2020. In: Kinshasa, RD Congo: Ministère National de la Santé Publique, Programme de Lutte contre le Paludisme (PNLP); 2016.
Ntuku HMT. Malaria epidemiology and key control interventions in the Democratic Republic of Congo. University_of_Basel; 2016.
Ntamabyaliro NY, Burri C, Nzolo DB, Engo AB, Lula YN, Mampunza SM, Nsibu CN, Mesia GK, Kayembe JN, Likwela JL, et al. Drug use in the management of uncomplicated malaria in public health facilities in the Democratic Republic of the Congo. Malar J. 2018;17(1):189.
Uwimana A, Legrand E, Stokes BH, Ndikumana J-LM, Warsame M, Umulisa N, Ngamije D, Munyaneza T, Mazarati J-B, Munguti K. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26(10):1602–8.
Tacoli C, Gai PP, Bayingana C, Sifft K, Geus D, Ndoli J, Sendegeya A, Gahutu JB, Mockenhaupt FP. Artemisinin resistance–associated K13 polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010–2015. Am J Trop Med Hyg. 2016;95(5):1090.
Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, Habimana RM, Rucogoza A, Moriarty LF, Sandford R. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis. 2021. 10.1016/S1473-3099(21)00142-0. DOI: 10.1016/S1473-3099(21)00142-0
Bergmann C, van Loon W, Habarugira F, Tacoli C, Jäger JC, Savelsberg D, Nshimiyimana F, Rwamugema E, Mbarushimana D, Ndoli J. Increase in Kelch 13 polymorphisms in Plasmodium falciparum, Southern Rwanda. Emerg Infect Dis. 2021;27(1):294.
Straimer J, Gandhi P, Renner KC, Schmitt EK. High prevalence of P. falciparum K13 mutations in Rwanda is associated with slow parasite clearance after treatment with artemether-lumefantrine. J Infect Dis. 2021. 10.1093/infdis/jiab352. DOI: 10.1093/infdis/jiab352
WHO. World malaria report 2021. Geneva: World Health Organization; 2022.
WHO. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020. p. 1–151.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339: b2535.
Bernardo WM. PRISMA statement and PROSPERO. Int Braz J Urol. 2017;43(3):383–4.
Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2011. p. 1–12.
Chambers J. Software for data analysis: programming with R. New York: Springer; 2008.
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.
Menard D, Dondorp A. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med. 2017;7(7): a025619.
Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Kabututu PZ, Situakibanza HNT, Umesumbu SE, De Mol P, Speybroeck N, Mvumbi GL, et al. Assessment of Plasmodium falciparum anti-malarial drug resistance markers in pfk13-propeller, pfcrt and pfmdr1 genes in isolates from treatment failure patients in Democratic Republic of Congo, 2018–2019. Malar J. 2021;20(1):144.
Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Kabututu PZ, Situakibanza HNT, Likwela JL, De Mol P, Okitolonda EW, Speybroeck N, et al. Molecular surveillance of anti-malarial drug resistance in Democratic Republic of Congo: high variability of chloroquinoresistance and lack of amodiaquinoresistance. Malar J. 2020;19(1):121.
Mobula L, Lilley B, Tshefu AK, Rosenthal PJ. Resistance-mediating polymorphisms in Plasmodium falciparum infections in Kinshasa, Democratic Republic of the Congo. Am J Trop Med Hyg. 2009;80(4):555–8.
Nundu SS, Culleton R, Simpson SV, Arima H, Chitama BA, Muyembe JJ, Ahuka S, Kaneko O, Mita T, Yamamoto T. Identification of polymorphisms in genes associated with drug resistance in Plasmodium falciparum isolates from school-age children in Kinshasa, Democratic Republic of Congo. Parasitol Int. 2022;88: 102541.
Moriarty LF, Nkoli PM, Likwela JL, Mulopo PM, Sompwe EM, Rika JM, Mavoko HM, Svigel SS, Jones S, Ntamabyaliro NY, et al. Therapeutic efficacy of artemisinin-based combination therapies in Democratic Republic of the Congo and investigation of molecular markers of antimalarial resistance. Am J Trop Med Hyg. 2021;105(4):1067–75.
Ochong EO, van den Broek IV, Keus K, Nzila A. Association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the upper Nile in Southern Sudan. Am J Trop Med Hyg. 2003;69(2):184–7.
Humphreys G, Merinopoulos I, Ahmed J, Whitty C, Mutabingwa T, Sutherland C, Hallett R. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother. 2007;51(3):991–7.
Menard D, Yapou F, Manirakiza A, Djalle D, Matsika-Claquin MD, Talarmin A. Polymorphisms in pfcrt, pfmdr1, dhfr genes and in vitro responses to antimalarials in Plasmodium falciparum isolates from Bangui, Central African Republic. Am J Trop Med Hyg. 2006;75(3):381–7.
Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab G, Barnadas C, Berry A, Boum Y. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374(25):2453–64.
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, Kim S, Duru V, Bouchier C, Ma L. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505(7481):50–5.
WHO. Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010–2019). Geneva: World Health Organization; 2020.
Kayiba NK, Yobi DM, Tshibangu-Kabamba E, Tuan VP, Yamaoka Y, Devleesschauwer B, Mvumbi DM, Okitolonda Wemakoy E, De Mol P, Mvumbi GL, et al. Spatial and molecular mapping of Pfkelch13 gene polymorphism in Africa in the era of emerging Plasmodium falciparum resistance to artemisinin: a systematic review. Lancet Infect Dis. 2021;21(4):e82–92.
Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, Lim P, Mead D, Oyola SO, Dhorda M. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47(3):226–34.
Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana SI, Yamauchi M, Opio W, Emoto S, Anywar DA, Kimura E, et al. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2021;385(13):1163–71.
Bwire GM, Ngasala B, Mikomangwa WP, Kilonzi M, Kamuhabwa AA. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci Rep. 2020;10(1):1–7.
Brooks DR, Wang P, Read M, Watkins WM, Sims PF, Hyde JE. Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur J Biochem. 1994;224(2):397–405.
Elliott JH, Turner T, Clavisi O, Thomas J, Higgins JP, Mavergames C, Gruen RL. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Med. 2014;11(2): e1001603.
Mvumbi DM, Kayembe JM, Situakibanza H, Bobanga TL, Nsibu CN, Mvumbi GL, Melin P, De Mol P, Hayette MP. Falciparum malaria molecular drug resistance in the Democratic Republic of Congo: a systematic review. Malar J. 2015;14:354.
Runtuwene LR, Tuda JSB, Mongan AE, Makalowski W, Frith MC, Imwong M, Srisutham S, Nguyen Thi LA, Tuan NN, Eshita Y, et al. Nanopore sequencing of drug-resistance-associated genes in malaria parasites, Plasmodium falciparum. Sci Rep. 2018;8(1):8286.
Imai K, Tarumoto N, Runtuwene LR, Sakai J, Hayashida K, Eshita Y, Maeda R, Tuda J, Ohno H, Murakami T, et al. An innovative diagnostic technology for the codon mutation C580Y in kelch13 of Plasmodium falciparum with MinION nanopore sequencer. Malar J. 2018;17(1):217.
Hamre KE, Pierre B, Namuyinga R, Mace K, Rogier EW, Udhayakumar V, Boncy J, Lemoine JF, Chang MA. Establishing a national molecular surveillance program for the detection of Plasmodium falciparum markers of resistance to antimalarial drugs in Haiti. Am J Trop Med Hyg. 2020;103(6):2217.
Ndiaye M, Sow D, Nag S, Sylla K, Tine RC, Ndiaye JL, Lo AC, Gaye O, Faye B, Alifrangis M. Country-wide surveillance of molecular markers of antimalarial drug resistance in Senegal by use of positive malaria rapid diagnostic tests. Am J Trop Med Hyg. 2017;97(5):1593.
Njiro BJ, Mutagonda RF, Chamani AT, Mwakyandile T, Sabas D, Bwire GM. Molecular surveillance of chloroquine-resistant Plasmodium falciparum in sub-Saharan African countries after withdrawal of chloroquine for treatment of uncomplicated malaria: a systematic review. J Infect Public Health. 2022;15(5):550–7.
WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
Wang LT, Bwambale R, Keeler C, Reyes R, Muhindo R, Matte M, Ntaro M, Mulogo E, Sundararajan R, Boyce RM. Private sector drug shops frequently dispense parenteral anti-malarials in a rural region of Western Uganda. Malar J. 2018;17:1–9.
Mvumbi D. Mass intake of hydroxychloroquine or chloroquine in the present context of the COVID-19 outbreak: possible consequences in endemic malaria settings. Med Hypotheses. 2020. 10.1016/j.mehy.2020.109912. DOI: 10.1016/j.mehy.2020.109912
Gnegel G, Hauk C, Neci R, Mutombo G, Nyaah F, Wistuba D, Häfele-Abah C, Heide L. Identification of falsified chloroquine tablets in africa at the time of the COVID-19 pandemic. Am J Trop Med Hyg. 2020;103(1):73–6.
Wicht KJ, Small-Saunders JL, Hagenah LM, Mok S, Fidock DA. Mutant PfCRT can mediate piperaquine resistance in African Plasmodium falciparum with reduced fitness and increased susceptibility to other antimalarials. J Infect Dis. 2022. 10.1093/infdis/jiac365. DOI: 10.1093/infdis/jiac365
Boonyalai N, Vesely BA, Thamnurak C, Praditpol C, Fagnark W, Kirativanich K, Saingam P, Chaisatit C, Lertsethtakarn P, Gosi P, et al. Piperaquine resistant cambodian Plasmodium falciparum clinical isolates: in vitro genotypic and phenotypic characterization. Malar J. 2020;19(1):269.
Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, Chy S, Kim S, Ke S, Kloeung N, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis. 2017;17(2):174–83.
Conrad MD, Asua V, Garg S, Giesbrecht D, Niaré K, Smith S, Namuganga JF, Katairo T, Legac J, Crudale RM. Evolution of partial resistance to artemisinins in malaria parasites in Uganda. N Engl J Med. 2023;389(8):722–32.
Plucinski MM, Talundzic E, Morton L, Dimbu PR, Macaia AP, Fortes F, Goldman I, Lucchi N, Stennies G, MacArthur JR. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uige Provinces, angola. Antimicrob Agents Chemother. 2015;59(1):437–43.
Pradines B, Briolant S, Henry M, Oeuvray C, Baret E, Amalvict R, Didillon E, Rogier C. Absence of association between pyronaridine in vitro responses and polymorphisms in genes involved in quinoline resistance in Plasmodium falciparum. Malar J. 2010;9:339.
Nguyen TD, Gao B, Amaratunga C, Dhorda M, Tran TNA, White NJ, Dondorp AM, Boni MF, Aguas R. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat Commun. 2023;14(1):4568.
van der Pluijm RW, Tripura R, Hoglund RM, Pyae Phyo A, Lek D, Ul Islam A, Anvikar AR, Satpathi P, Satpathi S, Behera PK, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2020;395(10233):1345–60.
Diarra H, Makhulu EE, Odhiambo PO, Irekwa RM, Kinyua J, Herren JK, Mobegi VA. Molecular investigation of genetic signatures of selection in Plasmodium falciparum actin-binding protein coronin, cysteine desulfurase, and plasmepsin 2 gene in Mbita field isolates, Western Kenya. Open J Genetics. 2021;11(4):120–44.
Paloque L, Coppée R, Stokes BH, Gnädig NF, Niaré K, Augereau J-M, Fidock DA, Clain J, Benoit-Vical F. Mutation in Plasmodium falciparum BTB/POZ domain of K13 protein confers artemisinin resistance. Antimicrob Agents Chemother. 2021. 10.1128/AAC.01320-21. DOI: 10.1128/AAC.01320-21
Sharma AI, Demas AR, Hartl DL, Wirth DF. Reply to Velavan et al.: Polymorphisms of pfcoronin in natural populations: implications for functional significance. Proc Natl Acad Sci. 2019;116(26):12613–4.
WHO. Strategy to respond to antimalarial drug resistance in Africa. In: Strategy to respond to antimalarial drug resistance in Africa. Geneva: World Health Organization; 2022.
WHO. WHO guidelines for malaria, 13 July 2021. Geneva: World Health Organization; 2021.
van Eijk AM, Larsen DA, Kayentao K, Koshy G, Slaughter DE, Roper C, Okell LC, Desai M, Gutman J, Khairallah C. Effect of Plasmodium falciparum sulfadoxine-pyrimethamine resistance on the effectiveness of intermittent preventive therapy for malaria in pregnancy in Africa: a systematic review and meta-analysis. Lancet Infect Dis. 2019;19(5):546–56.
WHO. WHO policy brief for the implementation of intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP). Geneva: World Health Organization; 2013.
Kayiba NK, Yobi DM, Kouoneyou VRT, Mvumbi DM, Kabututu PZ, Devleesschauwer B, Sompwe EM, DeMol P, Hayette M-P, Mvumbi GL. Evaluation of the usefulness of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine in a context with increased resistance of Plasmodium falciparum in Kingasani Hospital, Kinshasa in the Democratic Republic of Congo. Infect Genetics Evol. 2021;94: 105009.
Gonçalves BP, Walker PG, Cairns M, Tiono AB, Bousema T, Drakeley C. Pregnant women: an overlooked asset to Plasmodium falciparum malaria elimination campaigns? Trends Parasitol. 2017;33(7):510–8.
WHO. Intermittent preventive treatment for infants using sulfadoxine-pyrimethamine (SP-IPTi) for malaria control in Africa: implementation field guide. Geneva: World Health Organization; 2011.
Kalenda NK, Tshibangu-Kabamba E, Nakagama Y, Kaku N, Kaneko A, Speybroeck N, Kido Y. Usefulness of seasonal malaria chemoprevention in the Sahel. Lancet Infect Dis. 2023;23(3):269–70.
Deutsch-Feldman M, Aydemir O, Carrel M, Brazeau NF, Bhatt S, Bailey JA, Kashamuka M, Tshefu AK, Taylor SM, Juliano JJ. The changing landscape of Plasmodium falciparum drug resistance in the Democratic Republic of Congo. BMC Infect Dis. 2019;19:1–10.
Nkoli Mandoko P, Rouvier F, Matendo Kakina L, Moke Mbongi D, Latour C, Losimba Likwela J, Ngoyi Mumba D, Bi Shamamba SK, Tamfum Muyembe J-J, Muepu Tshilolo L. Prevalence of Plasmodium falciparum parasites resistant to sulfadoxine/pyrimethamine in the Democratic Republic of the Congo: emergence of highly resistant pfdhfr/pfdhps alleles. J Antimicrob Chemother. 2018;73(10):2704–15.
Beshir KB, Muwanguzi J, Nader J, Mansukhani R, Traore A, Gamougam K, Ceesay S, Bazie T, Kolie F, Lamine MM, et al. Prevalence of Plasmodium falciparum haplotypes associated with resistance to sulfadoxine–pyrimethamine and amodiaquine before and after upscaling of seasonal malaria chemoprevention in seven African countries: a genomic surveillance study. Lancet Infect Dis. 2023;23(3):361–70.
Severini C, Menegon M, Sannella AR, Paglia MG, Narciso P, Matteelli A, Gulletta M, Caramello P, Canta F, Xayavong MV. Prevalence of pfcrt point mutations and level of chloroquine resistance in Plasmodium falciparum isolates from Africa. Infect Genet Evol. 2006;6(4):262–8.
Gosling RD, Gesase S, Mosha JF, Carneiro I, Hashim R, Lemnge M, Mosha FW, Greenwood B, Chandramohan D. Protective efficacy and safety of three antimalarial regimens for intermittent preventive treatment for malaria in infants: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9700):1521–32.
Kalilani-Phiri L, Thesing PC, Nyirenda OM, Mawindo P, Madanitsa M, Membe G, Wylie B, Masonbrink A, Makwakwa K, Kamiza S. Timing of malaria infection during pregnancy has characteristic maternal, infant and placental outcomes. PLoS ONE. 2013;8(9): e74643.
Alker AP, Kazadi WM, Kutelemeni AK, Bloland PB, Tshefu AK, Meshnick SR. dhfr and dhps genotype and sulfadoxine-pyrimethamine treatment failure in children with falciparum malaria in the Democratic Republic of Congo. Trop Med Int Health. 2008;13(11):1384–91.
Minja DT, Schmiegelow C, Mmbando B, Boström S, Oesterholt M, Magistrado P, Pehrson C, John D, Salanti A, Luty AJ. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania. Emerg Infect Dis. 2013;19(9):1446.
Staines HM, Burrow R, Teo BH, Chis Ster I, Kremsner PG, Krishna S. Clinical implications of Plasmodium resistance to atovaquone/proguanil: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(3):581–95.
Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop. 2014;137:44–57.
Plowe C. Antimalarial drug resistance in Africa: strategies for monitoring and deterrence. In: Compans RW, Cooper MD, Honjo T, editors. Malaria: drugs, disease and post-genomic biology. Berlin: Springer; 2005. p. 55–79.