[en] Melt ponds are a common feature of the Arctic sea-ice environment during summer, and they play an important role in the exchange of heat and water vapor between the ocean and the atmosphere. We report the results of a time-series study of the CO2 dynamics within melt ponds (and nearby lead) and related fluxes with the atmosphere during the summer-to-autumn transition in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. In late summer 2020, low-salinity meltwater was distributed throughout the melt ponds, and undersaturation of pCO2 in the meltwater drove a net influx of CO2 from the atmosphere. The meltwater layer subsequently thinned due to seawater influx, and a strong gradient in salinity and low-pCO2 water was observed at the interface between meltwater and seawater at the beginning of September. Mixing between meltwater and underlying seawater drives a significant drawdown of pCO2 as a result of the non-linearities in carbonate chemistry. By the middle of September, the strong stratification within the meltwater had dissipated. Subsequent freezing then began, and cooling and wind-induced drifting of ice floes caused mixing and an influx of seawater through the bottom of the melt pond. The pCO2 in the melt pond reached 300 µatm as a result of exchanging melt pond water with the underlying seawater. However, gas exchange was impeded by the formation of impermeable freshwater ice on the surface of the melt pond, and the net flux of CO2 was nearly zero into the pond, which was no longer a sink for atmospheric CO2. Overall, the melt ponds in this Arctic sea-ice area (both melt ponds and lead water) act as moderate sinks for atmospheric CO2.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Yoshimura, Masaki ; 1Faculty/Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
Nomura, Daiki; 1Faculty/Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido, Japan ; 2Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan ; 3Arctic Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
Webb, Alison L.; 4School of Life Sciences, University of Warwick, Coventry, UK ; 5Current address: Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
Li, Yuhong; 6Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
Dall’osto, Manuel; 7Institute of Marine Science, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
Schmidt, Katrin; 8School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
Droste, Elise S.; 9Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany ; 10School of Environmental Sciences, University of East Anglia, Norwich, UK
Chamberlain, Emelia J.; 11Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA ; 12Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Posman, Kevin M.; 13Bigelow Laboratory for Ocean Sciences, Boothbay, ME, USA
Blomquist, Byron; 15National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Laboratory (PSL), Boulder, CO, USA ; 16Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Meyer, Hanno; 17Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Hoppema, Mario; 9Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Tozawa, Manami; 1Faculty/Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
Inoue, Jun; 18National Institute of Polar Research, Tachikawa, Japan
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Abril, G, Libardoni, BG, Brandini, N, Cotovicz, LC Jr, Medeiros, PRP, Cavalcante, GH, Knoppers, BA. 2021. Thermodynamic uptake of atmospheric CO2 in the oligotrophic and semiarid Sao Francisco estuary (NE Brazil). Marine Chemistry 233. DOI: https://doi.org/10.1016/j.marchem.2021.103983.
Angot, H, Beck, I, Jokinen, T, Laurila, T, Quéléver, L, Schmale, J. 2022. Carbon dioxide dry air mole fractions measured in the Swiss container during MOSAiC 2019/2020 [dataset]. PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.944248.
Bates, NR, Garley, R, Frey, KE, Shake, KL, Mathis, JT. 2014. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: Meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice. Biogeosciences 11(23): 6769–6789. DOI: https://doi.org/10.5194/bg-11-6769-2014.
Bates, NR, Mathis, JT. 2009. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6(11): 2433–2459. DOI: https://doi.org/10.5194/bg-6-2433-2009.
Bates, NR, Moran, SB, Hansell, DA, Mathis, JT. 2006. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophysical Research Letters 33(23). DOI: https://doi.org/10.1029/2006GL027028.
Cai, W-J, Chen, CTA, Borges, AV. 2013. Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes, in Bianchi, TS, Allison, MA, Cai, W-J eds., Biogeochemical dynamics at major river-coastal interfaces: Linkages with global change. New York, NY: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139136853.010.
Cox, GFN, Weeks, WF. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology 29: 306–316. DOI: https://doi.org/10.3189/S0022143000008364.
Delille, B, Vancoppenolle, M, Geilfus, N-X, Tilbrook, B, Lannuzel, D, Schoemann, V, Becquevort, S, Carnat, G, Delille, D, Lancelot, C, Chou, L, Dieckmann, GS, Tison, J-L. 2014. Southern Ocean CO2 sink: The contribution of the sea ice. Journal of Geophysical Research-Oceans 119: 6340–6355. DOI: https://doi.org/10.1002/2014JC009941.
Dickson, AG. 1990. Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22(2): 113–127. DOI: https://doi.org/10.1016/0021-9614(90)90074-z.
Dickson, AG, Sabine, CL, Christian, JR eds. 2007. Guide to best practices for ocean CO2 measurement. North Pacific Marine Science Organization. (PICES Special Publication 3). DOI: https://doi.org/10.25607/OBP-1342.
Eicken, H. 1994. Structure of under-ice melt ponds in the central Arctic and their effect on the sea-ice cover. Limnology and Oceanography 39(3): 682–694. DOI: https://doi.org/10.4319/lo.1994.39.3.0682.
Eicken, H, Grenfell, TC, Perovich, DK, Richter-Menge, JA, Frey, K. 2004. Hydraulic controls of summer Arctic pack ice albedo. Journal of Geophysical Research-Oceans 109(C8). DOI: https://doi.org/10.1029/2003JC001989.
Eicken, H, Krouse, HR, Kadko, D, Perovich, DK. 2002. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. Journal of Geophysical Research-Oceans 107(C10). DOI: https://doi.org/10.1029/2000JC000583.
Feng, J, Zhang, Y, Cheng, Q, Tsou, JY. 2022. Pan-Arctic melt pond fraction trend, variability, and contribution to sea ice changes. Global and Planetary Change 217. DOI: https://doi.org/10.1016/j.gloplacha.2022.103932.
Fernández-Méndez, M, Katlein, C, Rabe, B, Nicolaus, M, Peeken, I, Bakker, K, Flores, H, Boetius, A. 2015. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 12(11): 3525–3549. DOI: https://doi.org/10.5194/bg-12-3525-2015.
Fernández-Méndez, M, Wenzhöfer, F, Peeken, I, Sorensen, HL, Glud, RN, Boetius, A. 2014. Composition, buoyancy regulation and fate of ice algal aggregates in the central Arctic Ocean. Plos One 9(9). DOI: https://doi.org/10.1371/journal.pone.0107452.
Geilfus, N-X, Galley, RJ, Crabeck, O, Papakyriakou, T, Landy, J, Tison, J-L, Rysgaard, S. 2015. Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the Canadian Arctic. Biogeosciences 12(6): 2047–2061. DOI: https://doi.org/10.5194/bg-12-2047-2015.
Golden, KM, Ackley, SF, Lytle, VI. 1998. The percolation phase transition in sea ice. Science 282: 2238–2241. DOI: https://doi.org/10.1126/science.282.5397. 2238.
Goyet, C, Poisson, A. 1989. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Research Part A-Oceanographic Research Papers 36(11): 1635–1654. DOI: https://doi.org/10.1016/ 0198-0149(89)90064-2.
Gradinger, RR, Meiners, K, Plumley, G, Zhang, Q, Bluhm, BA. 2005. Abundance and composition of the sea-ice meiofauna in off-shore pack ice of the Beaufort Gyre in summer 2002 and 2003. Polar Biology 28(3): 171–181. DOI: https://doi.org/10.1007/s00300-004-0674-5.
Horikawa, T, Nomura, D, Kanna, N, Fukamachi, Y, Sugiyama, S. 2022. Effects of the glacial meltwater supply on carbonate chemistry in Bowdoin Fjord, Northwestern Greenland. Frontiers in Marine Science 9.DOI:https://doi.org/10.3389/fmars.2022.873860.
Johnson, KM. 1992. Single-operator multiparameter metabolic analyzer (SOMMA) for total carbon dioxide (C{sub T}) with coulometric detection. Operator’s manual. SOMMA manual 1.0, January 1992. Upton, NY: Brookhaven National Laboratory: 70. DOI: https://doi.org/10.2172/10194787.
Johnson, KM, King, AE, Sieburth, JM. 1985. Coulometric TCO2 analyses for marine studies; An introduction. Marine Chemistry 16(1): 61–82. DOI: https://doi.org/10.1016/0304-4203(85)90028-3.
Lange, BA, Salganik, E, Macfarlane, A, Schneebeli, M, Hoyland, K, Gardner, J, Müller, O, Divine, DV, Kohlbach, D, Katlein, C, Granskog, MA. 2023. Snowmelt contribution to Arctic first-year ice ridge mass balance and rapid consolidation during summer melt. Elementa: Science of the Anthropocene 11(1). DOI: https://doi.org/10.1525/elementa.2022.00037.
Lee, SH, Stockwell, DA, Joo, H-M, Son, YB, Kang, C-K, Whitledge, TE. 2012. Phytoplankton production from melting ponds on Arctic sea ice. Journal of Geophysical Research-Oceans 117. DOI: https://doi.org/10.1029/2011JC007717.
Marsay, CM, Aguilar-Islas, A, Fitzsimmons, JN, Hatta, M, Jensen, LT, John, SG, Kadko, D, Landing, WM, Lanning, NT, Morton, PL, Pasqualini, A, Rauschenberg, S, Sherrell, RM, Shiller, AM, Twining, BS, Whitmore, LM, Zhang, RF, Buck, CS. 2018. Dissolved and particulate trace elements in late summer Arctic melt ponds. Marine Chemistry 204: 70–85. DOI: https://doi.org/10.1016/j.marchem. 2018.06.002.
Meire, L, Søgaard, DH, Mortensen, J, Meysman, FJR, Soetaert, K, Arendt, KE, Juul-Pedersen, T, Blicher, ME, Rysgaard, S. 2015. Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet. Biogeosciences 12(8): 2347–2363. DOI: https://doi.org/10.5194/bg-12-2347-2015.
Melnikov, IA, Kolosova, EG, Welch, HE, Zhitina, LS. 2002. Sea ice biological communities and nutrient dynamics in the Canada Basin of the Arctic Ocean. Deep-Sea Research Part I-Oceanographic Research Papers 49(9): 1623–1649. DOI: https://doi.org/10.1016/S0967-0637(02)00042-0.
Meyer, H, Mellat, M, Nomura, D, Damm, E, Bauch, D, Weiner, M, Marent, A. 2022. Stable water isotopes and conductivities of a lead case study during Leg 5 of the MOSAiC expedition. PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.945285.
Meyer, H, Schönicke, L, Wand, U, Hubberten, HM, Friedrichsen, H. 2000. Isotope studies of hydrogen and oxygen in ground ice—Experiences with the equilibration technique. Isotopes in Environmental and Health Studies 36(2): 133–149. DOI: https://doi.org/10.1080/10256010008032939.
Mook, WG, Koene, BKS. 1975. Chemistry of dissolved inorganic carbon in estuarine and coastal brackish waters. Estuarine and Coastal Marine Science 3(3): 325–336. DOI: https://doi.org/10.1016/0302-3524(75)90032-8.
National Snow and Ice Data Center. 2024. Sea Ice Index, Version 3. Microsoft Excel workbook (691 KB). Sea_Ice_Index_Daily_Extent_G02135_v3.0. Available at https://noaadata.apps.nsidc.org/NOAA/G02135/seaice_analysis/Sea_Ice_Index_ Daily_Extent_G02135_v3.0.xlsx. DOI: https://doi.org/10.7265/N5K072F8.
Nicolaus, M, Perovich, DK, Spreen, G, Granskog, MA, von Albedyll, L, Angelopoulos, M, Anhaus, P, Arndt, S, Belter, HJ, Bessonov, V, Birnbaum, G, Brauchle, J, Calmer, R, Cardellach, E, Cheng, B, Clemens-Sewall, D, Dadic, R, Damm, E, de Boer, G, Demir, O, Dethloff, K, Divine, DV, Fong, AA, Fons, S, Frey, MM, Fuchs, N, Gabarró, C, Gerland, S, Goessling, HF, Gradinger, R, Haapala, J, Haas, C, Hamilton, J, Hannula, H-R, Hendricks, S, Herber, A, Heuzé, C, Hoppmann, M, Hoyland, KV, Huntemann, M, Hutchings, JK, Hwang, BJ, Itkin, P, Jacobi, H-W, Jaggi, M, Jutila, A, Kaleschke, L, Katlein, C, Kolabutin, N, Krampe, D, Kristensen, SS, Krumpen, T, Kurtz, N, Lampert, A, Lange, BA, Lei, R, Light, B, Linhardt, F, Liston, GE, Loose, B, Macfarlane, AR, Mahmud, M, Matero, IO, Maus, S, Morgenstern, A, Naderpour, R, Nandan, V, Niubom, A, Oggier, M, Oppelt, N, Pätzold, F, Perron, C, Petrovsky, T, Pirazzini, R, Polashenski, C, Rabe, B, Raphael, IA, Regnery, J, Rex, M, Ricker, R, Riemann-Campe, K, Rinke, A, Rohde, J, Salganik, E, Scharien, RK, Schiller, M, Schneebeli, M, Semmling, M, Shimanchuk, E, Shupe, MD, Smith, MM, Smolyanitsky, V, Sokolov, V, Stanton, T, Stroeve, J, Thielke, L, Timofeeva, A, Tonboe, RT, Tavri, A, Tsamados, M, Wagner, DN, Watkins, D, Webster, M, Wendisch, M. 2022. Overview of the MOSAiC expedition: Snow and sea ice. Elementa: Science of the Anthropocene 10(1). DOI: https://doi.org/10. 1525/elementa.2021.000046.
Nixdorf, U, Dethloff, K, Rex, M, Shupe, M, Sommerfeld, A, Perovich, D, Nicolaus, M, Heuzé, C, Rabe, B, Loose, B, Damm, E, Gradinger, R, Fong, A, Maslowski, W, Rinke, A, Kwok, R, Spreen, G, Wendisch, M, Herber, A, Hirsekorn, M, Mohaupt, V, Frickenhaus, S, Immerz, A, Weiss-Tuider, K, König, B, Mengedoht, D, Regnery, J, Gerchow, P, Ransby, D, Krumpen, T, Morgenstern, A, Haas, C, Kanzow, T, Rack, FR, Saitzev, V, Sokolov, V, Makarov, A, Schwarze, S, Wunderlich, T, Wurr, K, Boetius, A. 2021. MOSAiC extended acknowledgement. Zenodo. DOI: http://doi.org/10.5281/zenodo.5179739.
Nomura, D, Angelopoulos, M, Stephens, M, Zhan, L, D’Angelo, A, Chamberlain, E, Yoshimura, M, Delille, B. 2024a. CO2 flux measurements by chambers on sea ice during expedition PS122 (MOSAiC Legs 1–5) to the central Arctic in October 2019–Sep-tember 2020. PANGAEA. DOI: https://doi.pangaea.de/10.1594/PANGAEA.966833.
Nomura, D, Aoki, S, Simizu, D, Iida, T. 2018a. Influence of sea ice crack formation on the spatial distribution of nutrients and microalgae in flooded Antarctic multiyear ice. Journal of Geophysical Research-Oceans 123(2): 939–951. DOI: https://doi.org/10.1002/2017JC012941.
Nomura, D, Granskog, MA, Assmy, P, Simizu, D, Hashida, G. 2013. Arctic and Antarctic sea ice acts as a sink for atmospheric CO2 during periods of snowmelt and surface flooding. Journal of Geophysical Research-Oceans 118. DOI: https://doi.org/10.1002/2013JC009048.
Nomura, D, Granskog, MA, Fransson, A, Chierici, M, Silyakova, A, Ohshima, KI, Cohen, L, Delille, B, Hudson, SR, Dieckmann, GS. 2018b. CO2 flux over young and snow-covered Arctic pack ice in winter and spring. Biogeosciences 15: 3331–3343. DOI: https://doi.org/10.5194/bg-15-3331-2018.
Nomura, D, Ikawa, H, Kawaguchi, Y, Kanna, N, Kawakami, T, Nosaka, Y, Umezawa, S, Tozawa, M, Horikawa, T, Sahashi, R, Noshiro, T, Kaba, I, Ozaki, M, Kondo, F, Ono, K, Yabe, IS, Son, EY, Toyoda, T, Kameyama, S, Wang, CQ, Obata, H, Ooki, A, Ueno, H, Kasai, A. 2022. Atmosphere-sea ice-ocean interaction study in Saroma-ko Lagoon, Hokkaido, Japan 2021. Bulletin of Glaciological Research 40: 1–17. DOI: https://doi.org/10.5331/bgr.21R02.
Nomura, D, Kawaguchi, Y, Webb, AL, Li, YH, Dall’osto, M, Schmidt, K, Droste, ES, Chamberlain, EJ, Kolabutin, N, Shimanchuk, E, Hoppmann, M, Gallagher, MR, Meyer, H, Mellat, M, Bauch, D, Gabarró, C, Smith, MM, Inoue, J, Damm, E, Delille, B. 2023. Meltwater layer dynamics in a central Arctic lead: Effects of lead width, re-freezing, and mixing during late summer. Elementa: Science of the Anthropocene 11(1). DOI: https://doi.org/10.1525/elementa.2022.00102.
Nomura, D, Koga, S, Kasamatsu, N, Shinagawa, H, Simizu, D, Wada, M, Fukuchi, M. 2012. Direct measurements of DMS flux from Antarctic fast sea ice to the atmosphere by a chamber technique. Journal of Geophysical Research-Oceans 117. DOI: https://doi.org/10.1029/2010JC006755.
Nomura, D, Li, Y, Droste, ES, Webb, AL, Chamberlain, E, Yoshimura, M, Meyer, H, Delille, B. 2024b. Melt ponds and leads water sampling for biogeochemical parameters during expedition PS122/5 (MOSAiC Leg 5) to the central Arctic in August–September 2020. PANGAEA. DOI: https://doi.pangaea.de/10.1594/PANGAEA.966787.
Nomura, D, Li, Y, Kawaguchi, Y, Yoshimura, M. 2024c. Profiles of temperature, salinity, and density measured by a handheld CTD in melt ponds during expedition PS122/5 (MOSAiC Leg 5) to the central Arctic in August–September 2020. PANGAEA. DOI: https://doi.pangaea.de/10.1594/PANGAEA.966749.
Nomura, D, Li, Y, Yoshimura, M. 2024d. Water and ice temperatures measured by thermistor probe in a melt pond during expedition PS122/5 (MOSAiC Leg 5) to the central Arctic in August–September 2020. PANGAEA. DOI: https://doi.pangaea.de/10.1594/PANGAEA.966770.
Nomura, D, Simizu, D, Shinagawa, H, Oouchida, C, Fukuchi, M. 2011. Biogeochemical properties of water in surface ponds on Antarctic fast ice and their relationship with underlying sea-ice properties. Journal of Glaciology 57(205): 848–856. DOI: https://doi.org/10.3189/002214311798043825.
Nomura, D, Wongpan, P, Toyota, T, Tanikawa, T, Kawaguchi, Y, Ono, T, Ishino, T, Tozawa, M, Tamura, TP, Yabe, IS, Son, EY, Vivier, F, Lourenco, A, Lebrun, M, Nosaka, Y, Hirawake, T, Ooki, A, Aoki, S, Else, B, Fripiat, F, Inoue, J, Vancoppenolle, M. 2020. Saroma-ko Lagoon observations for sea ice physico-chemistry and ecosystems 2019 (SLOPE2019). Bulletin of Glaciological Research 38: 1–12. DOI: https://doi.org/10.5331/bgr.19R02.
Nomura, D, Yoshikawa-Inoue, H, Toyota, T, Shirasawa, K. 2010. Effects of snow, snowmelting and refreezing processes on air–sea-ice CO2 flux. Journal of Glaciology 56(196): 262–270. DOI: https://doi.org/10.3189/002214310791968548.
Ono, J, Watanabe, M, Komuro, Y, Tatebe, H, Abe, M. 2022. Enhanced Arctic warming amplification revealed in a low-emission scenario. Communications Earth & Environment 3(1). DOI: https://doi.org/10.1038/s43247-022-00354-4.
Ono, T, Watanabe, S, Okuda, K, Fukasawa, M. 1998. Distribution of total carbonate and related properties in the North Pacific along 30◦N. Journal of Geophysical Research-Oceans 103(C13): 30873–30883. DOI: https://doi.org/10.1029/1998JC900018.
Østlund, HG, Hut, G. 1984. Arctic ocean water mass balance from isotope data. Journal of Geophysical Research-Oceans 89(C4): 6373–6381. DOI: https://doi.org/10.1029/JC089iC04p06373.
Perovich, DK, Grenfell, TC, Light, B, Hobbs, PV. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. Journal of Geophysical Research-Oceans 107(C10). DOI: https://doi.org/10.1029/ 2000JC000438.
Petrich, C, Eicken, H, Polashenski, CM, Sturm, M, Harbeck, JP, Perovich, DK, Finnegan, DC. 2012. Snow dunes: A controlling factor of melt pond distribution on Arctic sea ice. Journal of Geophysical Research-Oceans 117. DOI: https://doi.org/10.1029/2012JC008192.
Polashenski, C, Perovich, D, Courville, Z. 2012. The mechanisms of sea ice melt pond formation and evolution. Journal of Geophysical Research-Oceans 117. DOI: https://doi.org/10.1029/2011JC007231.
Polyakov, IV, Walsh, JE, Kwok, R. 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society 93(2): 145–151. DOI: https://doi.org/10.1175/BAMS-D-11-00070.1.
Pringle, DJ, Miner, JE, Eicken, H, Golden, KM. 2009. Pore space percolation in sea ice single crystals. Journal of Geophysical Research-Oceans 114: C12017. DOI: https://doi.org/10.1029/2008JC005145.
Rantanen, M, Karpechko, AY, Lipponen, A, Nordling, K, Hyvärinen, O, Ruosteenoja, K, Vihma, T, Laaksonen, A. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3(1). DOI: https://doi.org/10.1038/s43247-022-00498-3.
Richter-Menge, JA, Perovich, DK, Pegau, WS. 2001. Summer ice dynamics during SHEBA and its effect on the ocean heat content. Annals of Glaciology 33: 201–206. DOI: https://doi.org/10.3189/172756401781818176.
Rösel, A, Kaleschke, L. 2011. Comparison of different retrieval techniques for melt ponds on Arctic sea ice from Landsat and MODIS satellite data. Annals of Glaciology 52(57): 185–191. DOI: https://doi.org/10.3189/172756411795931606.
Salisbury, J, Green, M, Hunt, C, Campbell, J. 2008. Coastal acidification by rivers: A threat to shellfish? EOS 89: 513–528. DOI: https://doi.org/10.1029/ 2008EO500001.
Schmithüsen, H, Raeke, A, Wenzel, J. 2021. Meteorological observations during POLARSTERN cruise PS122/ 5. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.935267.
Semiletov, I, Makshtas, A, Akasofu, S-I, Andreas, EL. 2004. Atmospheric CO2 balance: The role of Arctic sea ice. Geophysical Research Letters 31(5). DOI: https://doi.org/10.1029/2003GL017996.
Shupe, MD, Rex, M, Blomquist, B, Persson, POG, Schmale, J, Uttal, T, Althausen, D, Angot, H, Archer, S, Bariteau, L, Beck, I, Bilberry, J, Bucci, S, Buck, C, Boyer, M, Brasseur, Z, Brooks, IM, Calmer, R, Cassano, J, Castro, V, Chu, D, Costa, D, Cox, CJ, Creamean, J, Crewell, S, Dahlke, S, Damm, E, de Boer, G, Deckelmann, H, Dethloff, K, Dütsch, M, Ebell, K, Ehrlich, A, Ellis, J, Engelmann, R, Fong, AA, Frey, MM, Gallagher, MR, Ganzeveld, L, Gradinger, R, Graeser, J, Greenamyer, V, Griesche, H, Griffiths, S, Hamilton, J, Heinemann, G, Helmig, D, Herber, A, Heuzé, C, Hofer, J, Houchens, T, Howard, D, Inoue, J, Jacobi, H-W, Jaiser, R, Jokinen, T, Jourdan, O, Jozef, G, King, W, Kirchgaessner, A, Klingebiel, M, Krassovski, M, Krumpen, T, Lampert, A, Landing, W, Laurila, T, Lawrence, D, Lonardi, M, Loose, B, Lüpkes, C, Maahn, M, Macke, A, Maslowski, W, Marsay, C, Maturilli, M, Mech, M, Morris, S, Moser, M, Nicolaus, M, Ortega, P, Osborn, J, Pätzold, F, Perovich, DK, Petäjä, T, Pilz, C, Pirazzini, R, Posman, K, Powers, H, Pratt, KA, Preusser, A, Quéléver, L, Radenz, M, Rabe, B, Rinke, A, Sachs, T, Schulz, A, Siebert, H, Silva, T, Solomon, A, Sommerfeld, A, Spreen, G, Stephens, M, Stohl, A, Svensson, G, Uin, J, Viegas, J, Voigt, C, von der Gathen, P, Wehner, B, Welker, JM, Wendisch, M, Werner, M, Xie, ZQ, Yue, FG. 2022. Overview of the MOSAiC expedition: Atmosphere. Elementa: Science of the Anthropocene 10(1). DOI: https://doi.org/10.1525/elementa.2021. 00060.
Smith, MM, Angot, H, Chamberlain, EJ, Droste, ES, Karam, S, Muilwijk, M, Webb, AL, Archer, SD, Beck, I, Blomquist, BW, Bowman, J, Boyer, M, Bozzato, D, Chierici, M, Creamean, J, D’Angelo, A, Delille, B, Fer, I, Fong, AA, Fransson, A, Fuchs, N, Gardner, J, Granskog, MA, Hoppe, CJM, Hoppema, M, Hoppmann, M, Mock, T, Muller, S, Muller, O, Nicolaus, M, Nomura, D, Petäjä, T, Salganik, E, Schmale, J, Schmidt, K, Schulz, KM, Shupe, MD, Stefels, J, Thielke, L, Tippenhauer, S, Ulfsbo, A, van Leeuwe, M, Webster, M, Yoshimura, M, Zhan, LY. 2023. Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features. Elementa: Science of the Anthropocene 11(1). DOI: https://doi.org/10.1525/elementa.2023.00025.
Sørensen, HL, Thamdrup, B, Jeppesen, E, Rysgaard, S, Glud, RN. 2017. Nutrient availability limits biological production in Arctic sea ice melt ponds. Polar Biology 40(8): 1593–1606. DOI: https://doi.org/10.1007/s00300-017-2082-7.
Steiner, NS, Lee, WG, Christian, JR. 2013. Enhanced gas fluxes in small sea ice leads and cracks: Effects on CO2 exchange and ocean acidification. Journal of Geophysical Research-Oceans 118: 1195–1205. DOI: http://doi.org/10.1002/jgrc.20100.
Stroeve, JC, Kattsov, V, Barrett, A, Serreze, M, Pavlova, T, Holland, M, Meier, WN. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters 39. DOI: https://doi.org/10.1029/2012GL052676.
Takahashi, T, Sutherland, SC, Wanninkhof, R, Sweeney, C, Feely, RA, Chipman, DW, Hales, B, Friederich, G, Chavez, F, Sabine, C, Watson, A, Bakker, DCE, Schuster, U, Metzl, N, Yoshikawa-Inoue, H, Ishii, M, Midorikawa, T, Nojiri, Y, Körtzinger, A, Steinhoff, T, Hoppema, M, Olafsson, J, Arnarson, TS, Tilbrook, B, Johannessen, T, Olsen, A, Bellerby, R, Wong, CS, Delille, B, Bates, NR, de Baar, HJW. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II-Topical Studies in Oceanography 56(8–10): 554–577. DOI: https://doi.org/10.1016/j.dsr2.2008.12.009.
Taylor, P, Feltham, D. 2004. A model of melt pond evolution on sea ice. Journal of Geophysical Research-Oceans 109(C12). DOI: https://doi.org/10.1029/ 2004JC002361.
Webster, MA, Holland, M, Wright, NC, Hendricks, S, Hutter, N, Itkin, P, Light, B, Linhardt, F, Perovich, DK, Raphael, IA, Smith, MM, von Albedyll, L, Zhang, JL. 2022. Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results. Elementa: Science of the Anthropocene 10(1). DOI: https://doi.org/10.1525/elementa.2021.000072.
Weiss, RF, Price, BA. 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry 8(4): 347–359. DOI: https://doi.org/10.1016/0304-4203(80)90024-9.
Yasunaka, S, Siswanto, E, Olsen, A, Hoppema, M, Watanabe, E, Fransson, A, Chierici, M, Murata, A, Lauvset, SK, Wanninkhof, R, Takahashi, T, Kosugi, N, Omar, AM, van Heuven, S, Mathis, JT. 2018. Arctic Ocean CO2 uptake: An improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations. Biogeosciences 15(6): 1643–1661. DOI: https://doi.org/10.5194/ bg-15-1643-2018.
Zeebe, RE, Wolf-Gladrow, DA. 2001. CO2 in seawater: Equilibrium, kinetics, isotopes. Amsterdam, the Netherlands: Elsevier. (Elsevier oceanography series; vol. 65).
Zhou, J, Delille, B, Eicken, H, Vancoppenolle, M, Brabant, F, Carnat, G, Geilfus, N-X, Papakyriakou, T, Heinesch, B, Tison, J-L. 2013. Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons. Journal of Geophysical Research-Oceans 118: 3172–3189. DOI: https://doi.org/10.1002/jgrc.20232.