[en] BackgroundDespite widely implemented pneumococcal vaccination programmes, Streptococcus pneumoniae remains a global risk for human health. Streptococcus pneumoniae can cause invasive (IPD) or non-invasive pneumococcal disease (NIPD). Surveillance is mainly focusing on IPD, assessing the full impact of pneumococcal vaccination programmes on pneumococcal disease is challenging.AimWe aimed to prospectively investigate serotype distribution and antimicrobial resistance (AMR) of S. pneumoniae isolates from patients with NIPD and compare with data on IPD isolates and with a 2007-2008 dataset on NIPD.MethodsBetween September 2020 and April 2023, we collected isolates and patient data from patients with NIPD from 23 clinical laboratories in Belgium. Capsular typing was performed by a validated Fourier-Transform Infrared spectroscopic method, and AMR was assessed with broth microdilution, using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints.ResultsWe received S. pneumoniae isolates from 1,008 patients with lower respiratory tract infections (n = 760), otitis media (n = 190) and sinusitis (n = 58). Serotype 3 was the most prevalent serotype among the NIPD isolates. Serotypes not included in the 20-valent pneumococcal conjugate vaccine (PCV20) were significantly more common among the NIPD than among the IPD isolates. Antimicrobial resistance levels were significantly higher among the NIPD isolates (n = 539; 2020-2022) compared with the IPD isolates (n = 2,344; 2021-2022). Resistance to several β-lactam antimicrobials had increased significantly compared with 15 years before.ConclusionsThe NIPD isolates were strongly associated with non-vaccine serotypes and with increased AMR levels. This underlines the importance of continued NIPD surveillance for informed policy making on vaccination programmes.
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
Passaris, Ioannis ; Bacterial Diseases Unit, Sciensano, Brussels, Belgium
Braeye, Toon; Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
Mukovnikova, Marina; Laboratory of Medical Microbiology, Sciensano, Brussels, Belgium
Vodolazkaia, Alexandra; Laboratory of Medical Microbiology, Sciensano, Brussels, Belgium
Abels, Chloé; MSD Belgium, Brussels, Belgium
Cuypers, Lize; Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium ; National Reference Centre for invasive Streptococcus pneumoniae, UZ Leuven, Leuven, Belgium
Desmet, Stefanie; Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium ; National Reference Centre for invasive Streptococcus pneumoniae, UZ Leuven, Leuven, Belgium
Ceyssens, Pieter-Jan; Bacterial Diseases Unit, Sciensano, Brussels, Belgium
Non-invasive Streptococcus pneumoniae infections are associated with different serotypes than invasive infections, Belgium, 2020 to 2023.
Publication date :
November 2024
Journal title :
Euro Surveillance: Bulletin Européen sur les Maladies Transmissibles
ISSN :
1025-496X
eISSN :
1560-7917
Publisher :
European Centre for Disease Prevention and Control (ECDC), Sweden
Volume :
29
Issue :
45
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
We would like to acknowledge Fr\u00E9d\u00E9ric Fux, Heidi Vander Veken and Elke Wattijn for laboratory assistance, Kim Borighem and Lara-Lauren Robben for administrative support and Nathalie Gr\u00E9goire for training and support with the IR Biotyper.This study was sponsored by MSD (LDG-NIS008991) and co-funded by Pfizer (IIR-#52903527). The financial investment was equal between MSD and Pfizer.
Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. . Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-48. https://doi.org/10.1016/S0140-6736(22)02185-7 PMID: 36423648
Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev. 2015;28(3):871-99. https://doi.org/10.1128/CMR.00024-15 PMID: 26085553
Feldman C, Anderson R. Recent advances in the epidemiology and prevention of Streptococcus pneumoniae infections. F1000 Res. 2020;9:338. https://doi.org/10.12688/f1000research.22341.1 PMID: 32411353
Hanquet G, Krizova P, Valentiner-Branth P, Ladhani SN, Nuorti JP, Lepoutre A, et al. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax. 2019;74(5):473-82. https://doi.org/10.1136/ thoraxjnl-2018-211767 PMID: 30355641
Savulescu C, Krizova P, Valentiner-Branth P, Ladhani S, Rinta-Kokko H, Levy C, et al. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study. Vaccine. 2022;40(29):3963-74. https://doi.org/10.1016/j.vaccine.2022.05.011 PMID: 35637067
Amin-Chowdhury Z, Collins S, Sheppard C, Litt D, Fry NK, Andrews N, et al. Characteristics of invasive pneumococcal disease caused by emerging serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine in England: a prospective observational cohort study, 2014-2018. Clin Infect Dis. 2020;71(8):e235-43. https://doi.org/10.1093/cid/ciaa043 PMID: 31955196
Desmet S, Lagrou K, Wyndham-Thomas C, Braeye T, Verhaegen J, Maes P, et al. Dynamic changes in paediatric invasive pneumococcal disease after sequential switches of conjugate vaccine in Belgium: a national retrospective observational study. Lancet Infect Dis. 2021;21(1):127-36. https://doi.org/10.1016/S1473-3099(20)30173-0 PMID: 32702303
Janoff EN, Musher DM. 201 — Streptococcus pneumoniae. In: Bennett JE, Dolin R, Blaser MJ (editors). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Eighth ed., Amsterdam: Elsevier; 2014, p. 2310-27. Available from: https://www.sciencedirect.com/science/article/abs/pii/ B9781455748013002010
Blasi F, Mantero M, Santus P, Tarsia P. Understanding the burden of pneumococcal disease in adults. Clin Microbiol Infect. 2012;18(Suppl 5):7-14. https://doi.org/10.1111/j.14690691.2012.03937.x PMID: 22882668
Pick H, Daniel P, Rodrigo C, Bewick T, Ashton D, Lawrence H, et al. Pneumococcal serotype trends, surveillance and risk factors in UK adult pneumonia, 2013-18. Thorax. 2020;75(1):38-49. https://doi.org/10.1136/thoraxjnl-2019-213725 PMID: 31594801
Uddén F, Rünow E, Slotved H-C, Fuursted K, Ahl J, Riesbeck K. Characterization of Streptococcus pneumoniae detected in clinical respiratory tract samples in southern Sweden 2 to 4 years after introduction of PCV13. J Infect. 2021;83(2):190-6. https://doi.org/10.1016/j.jinf.2021.05.031 PMID: 34062179
Forstner C, Kolditz M, Kesselmeier M, Ewig S, Rohde G, Barten-Neiner G, et al. Pneumococcal conjugate serotype distribution and predominating role of serotype 3 in German adults with community-acquired pneumonia. Vaccine. 2020;38(5):1129-36. https://doi.org/10.1016/j.vaccine.2019.11.026 PMID: 31761500
Janssens A, Vaes B, Abels C, Crèvecoeur J, Mamouris P, Merckx B, et al. Pneumococcal vaccination coverage and adherence to recommended dosing schedules in adults: a repeated cross-sectional study of the INTEGO morbidity registry. BMC Public Health. 2023;23(1):1104. https://doi.org/10.1186/s12889-023-15939-7 PMID: 37286969
Boey L, Bosmans E, Ferreira LB, Heyvaert N, Nelen M, Smans L, et al. Vaccination coverage of recommended vaccines and determinants of vaccination in at-risk groups. Hum Vaccin Immunother. 2020;16(9):2136-43. https://doi.org/10.1080/21645515.2020.1763739 PMID: 32614656
Desmet S, Verhaegen J, Van Ranst M, Peetermans W, Lagrou K. Switch in a childhood pneumococcal vaccination programme from PCV13 to PCV10: a defendable approach? Lancet Infect Dis. 2018;18(8):830-1. https://doi.org/10.1016/S1473-3099(18)30346-3 PMID: 30001857
Wouters I, Desmet S, Van Heirstraeten L, Herzog SA, Beutels P, Verhaegen J, et al. How nasopharyngeal pneumococcal carriage evolved during and after a PCV13-to-PCV10 vaccination programme switch in Belgium, 2016 to 2018. Euro Surveill. 2020;25(5):1900303. https://doi.org/10.2807/15607917.ES.2020.25.5.1900303 PMID: 32046817
Ekinci E, Van Heirstraeten L, Willen L, Desmet S, Wouters I, Vermeulen H, et al., NP Carriage Study Group. Serotype 19A and 6C account for one third of pneumococcal carriage among Belgian day-care children four years after a shift to a lower-valent PCV. J Pediatric Infect Dis Soc. 2023;12(1):36-42. https://doi.org/10.1093/jpids/piac117 PMID: 36377804
Desmet S, Wouters I, Heirstraeten LV, Beutels P, Van Damme P, Malhotra-Kumar S, et al. In-depth analysis of pneumococcal serotypes in Belgian children (2015-2018): Diversity, invasive disease potential, and antimicrobial susceptibility in carriage and disease. Vaccine. 2021;39(2):372-9. https://doi.org/10.1016/j.vaccine.2020.11.044 PMID: 33308889
Ekinci E, Desmet S, Van Heirstraeten L, Mertens C, Wouters I, Beutels P, et al. Streptococcus pneumoniae serotypes carried by young children and their association with acute otitis media during the period 2016-2019. Front Pediatr. 2021;9:664083. https://doi.org/10.3389/fped.2021.664083 PMID: 34291017
Lewnard JA, Hong V, Bruxvoort KJ, Grant LR, Jódar L, Cané A, et al. Burden of lower respiratory tract infections preventable by adult immunization with 15- and 20-valent pneumococcal conjugate vaccines in the United States. Clin Infect Dis. 2023;77(9):1340-52. https://doi.org/10.1093/cid/ciad355 PMID: 37293708
Platt HL, Cardona JF, Haranaka M, Schwartz HI, Narejos Perez S, Dowell A, et al. A phase 3 trial of safety, tolerability, and immunogenicity of V114, 15-valent pneumococcal conjugate vaccine, compared with 13-valent pneumococcal conjugate vaccine in adults 50 years of age and older (PNEU-AGE). Vaccine. 2022;40(1):162-72. https://doi.org/10.1016/j.vaccine.2021.08.049 PMID: 34507861
Cannon K, Cardona JF, Yacisin K, Thompson A, Belanger TJ, Lee D-Y, et al. Safety and immunogenicity of a 20-valent pneumococcal conjugate vaccine coadministered with quadrivalent influenza vaccine: A phase 3 randomized trial. Vaccine. 2023;41(13):2137-46. https://doi.org/10.1016/j.vaccine.2022.11.046 PMID: 36828719
Fairman J, Agarwal P, Barbanel S, Behrens C, Berges A, Burky J, et al. Non-clinical immunological comparison of a Next-Generation 24-valent pneumococcal conjugate vaccine (VAX-24) using site-specific carrier protein conjugation to the current standard of care (PCV13 and PPV23). Vaccine. 2021;39(23):3197-206. https://doi.org/10.1016/j.vaccine.2021.03.070 PMID: 33965258
Simon MW, Bataille R, Caldwell NS, Gessner BD, Jodar L, Lamberth E, et al. Safety and immunogenicity of a multivalent pneumococcal conjugate vaccine given with 13-valent pneumococcal conjugate vaccine in healthy infants: A phase 2 randomized trial. Hum Vaccin Immunother. 2023;19(2):2245727. https://doi.org/10.1080/21645515.2023.2 245727 PMID: 37927075
McGuinness D, Kaufhold RM, McHugh PM, Winters MA, Smith WJ, Giovarelli C, et al. Immunogenicity of PCV24, an expanded pneumococcal conjugate vaccine, in adult monkeys and protection in mice. Vaccine. 2021;39(30):4231-7. https://doi.org/10.1016/j.vaccine.2021.04.067 PMID: 34074546
Platt H, Omole T, Cardona J, Fraser NJ, Mularski RA, Andrews C, et al. Safety, tolerability, and immunogenicity of a 21-valent pneumococcal conjugate vaccine, V116, in healthy adults: phase 1/2, randomised, double-blind, active comparator-controlled, multicentre, US-based trial. Lancet Infect Dis. 2023;23(2):233-46. https://doi.org/10.1016/S1473-3099(22)00526-6 PMID: 36116461
Bonten MJM, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015;372(12):1114-25. https://doi.org/10.1056/NEJMoa1408544 PMID: 25785969
Lund E. Laboratory diagnosis of Pneumococcus infections. Bull World Health Organ. 1960;23(1):5-13. PMID: 14418893
Varghese R, Jayaraman R, Veeraraghavan B. Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. J Microbiol Methods. 2017;141:48-54. https://doi.org/10.1016/j.mimet.2017.07.015 PMID: 28780272
Metcalf BJ, Waldetoft KW, Beall BW, Brown SP. Variation in pneumococcal invasiveness metrics is driven by serotype carriage duration and initial risk of disease. Epidemics. 2023;45(45):100731. https://doi.org/10.1016/j. epidem.2023.100731 PMID: 38039595
Vanhoof R, Camps K, Carpentier M, De Craeye S, Frans J, Glupczynski Y, et al. 10th survey of antimicrobial resistance in noninvasive clinical isolates of Streptococcus pneumoniae collected in Belgium during winter 2007-2008. Pathol Biol (Paris). 2010;58(2):147-51. https://doi.org/10.1016/j.patbio.2009.07.018 PMID: 19892491
Passaris I, Mauder N, Kostrzewa M, Burckhardt I, Zimmermann S, van Sorge NM, et al. Validation of fourier transform infrared spectroscopy for serotyping of Streptococcus pneumoniae. J Clin Microbiol. 2022;60(7):e0032522. https://doi.org/10.1128/jcm.00325-22 PMID: 35699436
National Reference Center for invasive Streptococcus pneumoniae invasive (NRC). Report National Reference Centre Streptococcus pneumoniae 2021 and 2022. Leuven: NRC. [Accessed: 9 Oct 2024]. Available from: https://www.sciensano.be/en/nrc-nrl/national-reference-center-nrcstreptococcus-pneumoniae-invasive
Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin Infect Dis. 2000;30(1):100-21. https://doi.org/10.1086/313608 PMID: 10619740
Løchen A, Truscott JE, Croucher NJ. Analysing pneumococcal invasiveness using Bayesian models of pathogen progression rates. PLOS Comput Biol. 2022;18(2):e1009389. https://doi.org/10.1371/journal.pcbi.1009389 PMID: 35176026
Dagan R, Pelton S, Bakaletz L, Cohen R. Prevention of early episodes of otitis media by pneumococcal vaccines might reduce progression to complex disease. Lancet Infect Dis. 2016;16(4):480-92. https://doi.org/10.1016/S1473-3099(15)00549-6 PMID: 27036355
Feemster K, Hausdorff WP, Banniettis N, Platt H, Velentgas P, Esteves-Jaramillo A, et al. Implications of cross-reactivity and cross-protection for pneumococcal vaccine development. Vaccines (Basel). 2024;12(9):974. https://doi.org/10.3390/ vaccines12090974 PMID: 39340006
Melin M, Jarva H, Siira L, Meri S, Käyhty H, Väkeväinen M. Streptococcus pneumoniae capsular serotype 19F is more resistant to C3 deposition and less sensitive to opsonophagocytosis than serotype 6B. Infect Immun. 2009;77(2):676-84. https://doi.org/10.1128/IAI.01186-08 PMID: 19047408
Arends DW, Miellet WR, Langereis JD, Ederveen THA, van der Gaast-de Jongh CE, van Scherpenzeel M, et al. Examining the distribution and impact of single-nucleotide polymorphisms in the capsular locus of Streptococcus pneumoniae serotype 19A. Infect Immun. 2021;89(11):e0024621. https://doi.org/10.1128/IAI.00246-21 PMID: 34251291
Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis. 2003;187(9):1424-32. https://doi.org/10.1086/374624 PMID: 12717624
Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL,, et al. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012;11(7):841-55. https://doi.org/10.1586/erv.12.53 PMID: 22913260
Fernández-Delgado L, Càmara J, González-Díaz A, Grau I, Shoji H, Tubau F, et al. Serotypes in adult pneumococcal pneumonia in Spain in the era of conjugate vaccines. Microorganisms. 2021;9(11):2245. https://doi.org/10.3390/ microorganisms9112245 PMID: 34835371
Silva-Costa C, Gomes-Silva J, Santos A, Ramirez M, Melo-Cristino J, Portuguese Group for the Study of Streptococcal Infections. Adult non-invasive pneumococcal pneumonia in Portugal is dominated by serotype 3 and non-PCV13 serotypes 3-years after near universal PCV13 use in children. Front Public Health. 2023;11:1279656. https://doi.org/10.3389/ fpubh.2023.1279656 PMID: 38186693
Shaw D, Abad R, Amin-Chowdhury Z, Bautista A, Bennett D, Broughton K, et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit Health. 2023;5(9):e582-93. https://doi.org/10.1016/S2589-7500(23)00108-5 PMID: 37516557
Brissac T, Martínez E, Kruckow KL, Riegler AN, Ganaie F, Im H, et al. Capsule promotes intracellular survival and vascular endothelial cell translocation during invasive pneumococcal disease. MBio. 2021;12(5):e0251621. https://doi.org/10.1128/mBio.02516-21 PMID: 34634940
Kietzman CC, Gao G, Mann B, Myers L, Tuomanen EI. Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium. Nat Commun. 2016;7(1):10859. https://doi.org/10.1038/ncomms10859 PMID: 26924467
Rueff A-S, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, et al. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun. 2023;14(1):7454. https://doi.org/10.1038/s41467-023-43241-y PMID: 37978173
Alghofaili F, Najmuldeen H, Kareem BO, Shlla B, Fernandes VE, Danielsen M, et al. Host stress signals stimulate pneumococcal transition from colonization to dissemination into the lungs. MBio. 2021;12(6):e0256921. https://doi.org/10.1128/mBio.02569-21 PMID: 34696596
Glanville DG, Gazioglu O, Marra M, Tokars VL, Kushnir T, Habtom M, et al. Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathog. 2023;19(1):e1011035. https://doi.org/10.1371/journal.ppat.1011035 PMID: 36719895
Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:338-46. https://doi.org/10.1016/j.ebiom.2019.04.021 PMID: 31003929
Obolski U, Gori A, Lourenço J, Thompson C, Thompson R, French N, et al. Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Sci Rep. 2019;9(1):4049. https://doi.org/10.1038/s41598-019-40346-7 PMID: 30858412
Jacques LC, Panagiotou S, Baltazar M, Senghore M, Khandaker S, Xu R, et al. Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. Nat Commun. 2020;11(1):1892. https://doi.org/10.1038/s41467-020-15751-6 PMID: 32312961
Chaguza C, Yang M, Cornick JE, du Plessis M, Gladstone RA, Kwambana-Adams BA, et al. Bacterial genome-wide association study of hyper-virulent pneumococcal serotype 1 identifies genetic variation associated with neurotropism. Commun Biol. 2020;3(1):559. https://doi.org/10.1038/s42003-020-01290-9 PMID: 33033372
Higgs C, Kumar LS, Stevens K, Strachan J, Korman T, Horan K, et al. Comparison of contemporary invasive and non-invasive Streptococcus pneumoniae isolates reveals new insights into circulating anti-microbial resistance determinants. Antimicrob Agents Chemother. 2023;67(11):e0078523. https://doi.org/10.1128/aac.00785-23 PMID: 37823632
Bruyndonckx R, Coenen S, Hens N, Vandael E, Catry B, Goossens H. Antibiotic use and resistance in Belgium: the impact of two decades of multi-faceted campaigning. Acta Clin Belg. 2021;76(4):280-8. https://doi.org/10.1080/17843286.2020.1721135 PMID: 32024450
Andrejko K, Ratnasiri B, Lewnard JA. Association of pneumococcal serotype with susceptibility to antimicrobial drugs: a systematic review and meta-analysis. Clin Infect Dis. 2022;75(1):131-40. https://doi.org/10.1093/cid/ciab852 PMID: 34599811
Brueggemann AB, Jansen van Rensburg MJ, Shaw D, McCarthy ND, Jolley KA, Maiden MCJ, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021;3(6):e360-70. https://doi.org/10.1016/S2589-7500(21)00077-7 PMID: 34045002