asteroseismology; stars: fundamental parameters; stars: oscillations; stars: solar-type; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics
Abstract :
[en] <BR /> Aims: In this work, we determine the expected yield of detections of solar-like oscillations for the targets of the foreseen PLATO ESA mission. Our estimates are based on a study of the detection probability, which takes into account the properties of the target stars, using the information available in the PIC 1.1.0, including the current best estimate of the signal-to-noise ratio (S/N). The stellar samples, as defined for this mission, include those with the lowest noise level (P1 and P2 samples) and the P5 sample, which has a higher noise level. For the P1 and P2 samples, the S/N is high enough (by construction) that we can assume that the individual mode frequencies can be measured. For these stars, we estimate the expected uncertainties in mass, radius, and age due to statistical errors induced by uncertainties from the observations only. <BR /> Methods: We used a formulation from the literature to calculate the detection probability. We validated this formulation and the underlying assumptions with Kepler data. Once validated, we applied this approach to the PLATO samples. Using again Kepler data as a calibration set, we also derived relations to estimate the uncertainties of seismically inferred stellar mass, radius, and age. We then applied those relations to the main sequence stars with masses equal to or below 1.2 M<SUB>⊙</SUB> belonging to the PLATO P1 and P2 samples and for which we predict a positive seismic detection. <BR /> Results: We found that we can expect positive detections of solar-like oscillations for more than 15 000 FGK stars in one single field after a two-year observation run. Among them, 1131 main sequence stars with masses of ≤1.2 M<SUB>⊙</SUB> satisfy the PLATO requirements for the uncertainties of the seismically inferred stellar masses, radii, and ages. The baseline observation programme of PLATO consists of observing two fields of similar size (one in the southern hemisphere and one in the northern hemisphere) for two years apiece. Accordingly, the expected seismic yields of the mission amount to over 30 000 FGK dwarfs and subgiants, with positive detections of solar-like oscillations. This sample of expected solar-like oscillating stars is large enough to enable the PLATO mission's stellar objectives to be amply satisfied. <BR /> Conclusions: The PLATO mission is expected to produce a catalog sample of extremely well seismically characterized stars of a quality that is equivalent to the Kepler Legacy sample, but containing a number that is about 80 times greater, when observing two PLATO fields for two years apiece. These stars are a gold mine that will make it possible to make significant advances in stellar modelling.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Goupil, M. J.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Catala, C.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Samadi, R.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Belkacem, K.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Ouazzani, R. M.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Reese, D. R.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Mathur, S.; Astrophysical Institute of the Canaries, University of La Laguna, Department of Astrophysics
Cabrera, J.; Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Planetenforschung, Rutherfordstr. 2, 12489, Berlin, Germany
Börner, A.; Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR), Institut für Optische Sensorsysteme, Rutherfordstr. 2, 12489, Berlin, Germany
Paproth, C.; Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR), Institut für Optische Sensorsysteme, Rutherfordstr. 2, 12489, Berlin, Germany
Moedas, N.; University of Porto, Center for Astrophysics, University of Porto, Institute for Physics
Verma, K.; Banaras Hindu University, India
Lebreton, Y.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Universite de Rennes 1, Institut de Physique
Deal, M.; Laboratoire Univers et Particules de Montpellier
Ballot, J.; IRAP, Université de Toulouse, CNRS, CNES, UPS, 14 avenue Édouard Belin, 31400, Toulouse, France
Chaplin, W. J.; University of Birmingham, School of Physics and Astronomy
Christensen-Dalsgaard, J.; Aarhus University, Institute for Physics and Astronomy
Cunha, M.; University of Porto, Center for Astrophysics
Lanza, A. F.; Astronomical Observatory of Catania
Miglio, A.; University of Bologna, Department of Physics and Astronomy, Astronomical Observatory of Bologna
Morel, Thierry ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Serenelli, A.; Institute of Space Studies, Catalona, -
Mosser, B.; Observatoire de Paris, Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
Creevey, O.; Observatoire de la Cote d'Azur, France
Moya, A.; University of Valencia, Department of Astronomy and Astrophysics
Garcia, R. A.; CEA Saclay, Service d'Astrophysique
Nielsen, M. B.; University of Birmingham, School of Physics and Astronomy
Hatt, E.; University of Birmingham, School of Physics and Astronomy
Aerts, C., Brown, D., Cabrera, J., et al. 2023, ScienceCalibration Stars Input Catalogue Requirements Justification,PLATO-KUL-PMC-TN-0001
Aguirre Børsen-Koch, V., Rørsted, J. L., Justesen, A. B., et al. 2022, MNRAS, 509, 4344
Appourchaux, T. 2004, A&A, 428, 1039
Appourchaux, T. 2020, PLATO noise background with the NormalCameras: implication for age determination, PLATO-IAS-SCI-AN-001
Appourchaux, T., Berthomieu, G., Michel, E., et al. 2006, in The CoRoT Mission Pre-Launch Status-Stellar Seismology and Planet Finding, eds. M. Fridlund, A. Baglin, J. Lochard, & L. Conroy, ESA Spec. Pub., 1306, 429
Appourchaux, T., Michel, E., Auvergne, M., et al. 2008, A&A, 488, 705
Appourchaux, T., Benomar, O., Gruberbauer, M., et al. 2012, A&A, 537, A134
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Baglin, A., Auvergne, M., Barge, P., et al. 2009, in Transiting Planets, eds. F. Pont, D. Sasselov, & M. J. Holman, 253, 71
Bétrisey, J., Buldgen, G., Reese, D. R., et al. 2023, A&A, 676, A10
Börner, A., Paproth, C., Cabrera, P. G., et al. 2023, Exp. Astron., submitted
Borucki, W. J., & Koch, D. Kepler Science Team 2010, in AAS/Division for Planetary Sciences Meeting Abstracts #42, 47.03
Buldgen, G. 2019, arXiv e-prints [arXiv:1902.10399]
Buldgen, G., Farnir, M., Eggenberger, P., et al. 2022, A&A, 661, A143
Campante, T. L., Schofield, M., Kuszlewicz, J. S., et al. 2016, ApJ, 830, 138
Chaplin, W. J., & Miglio, A. 2013, ARA&A, 51, 353
Chaplin, W. J., Basu, S., Huber, D., et al. 2014, ApJS, 210, 1
Chaplin, W. J., Bedding, T. R., Bonanno, A., et al. 2011a, ApJ, 732, L5
Chaplin, W. J., Kjeldsen, H., Bedding, T. R., et al. 2011b, ApJ, 732, 54
Christensen-Dalsgaard, J. 2008, Ap&SS, 316, 113
Christensen-Dalsgaard, J. 2016, arXiv e-prints [arXiv:1602.06838]
Christensen-Dalsgaard, J. 2018, in Variability of the Sun and Sun-Like Stars: from Asteroseismology to Space Weather, eds. J. P. Rozelot, & E. S. Babayev, 125
Christensen-Dalsgaard, J., & Silva Aguirre, V. 2018, in Handbook of Exoplanets, eds. H. J. Deeg, & J. A. Belmonte, 184
Corsaro, E., Fröhlich, H. E., Bonanno, A., et al. 2013, MNRAS, 430, 2313
Cox, J. P., & Giuli, R. T. 1968, Principles of Stellar Structure (New York: Gordon and Breach)
Creevey, O. L., Metcalfe, T. S., Schultheis, M., et al. 2017, A&A, 601, A67
Cunha, M. S., Roxburgh, I. W., Aguirre Børsen-Koch, V., et al. 2021, MNRAS, 508, 5864
Dupret, M. A. 2019, arXiv e-prints [arXiv:1901.08809]
Farnir, M., Dupret, M. A., Buldgen, G., et al. 2020, A&A, 644, A37
Farnir, M., Valentino, A., Dupret, M. A., & Broomhall, A. M. 2023, MNRAS, 521, 4131
García, R. A., & Ballot, J. 2019, Liv. Rev. Sol. Phys., 16, 4
Garcia, R. A., Ballot, J., Mathur, S., Salabert, D., & Regulo, C. 2010, arXiv e-prints [arXiv:1012.0494]
Gilliland, R. L., Jenkins, J. M., Borucki, W. J., et al. 2010, ApJ, 713, L160
Grevesse, N., & Sauval, A. J. 1998, Space. Sci. Rev., 85, 161
Heiter, U., Lind, K., Asplund, M., et al. 2015b, Phys. Scr, 90, 054010
Hekker, S. 2020, Front. Astron. Space Sci., 7, 3
Houdek, G., & Gough, D. O. 2007, in Unsolved Problems in Stellar Physics: A Conference in Honor of Douglas Gough, eds. R. J. Stancliffe, G. Houdek, R. G. Martin, & C. A. Tout, Am. Inst. Phys. Conf. Ser., 948, 219
Huber, D., Bedding, T. R., Stello, D., et al. 2011, ApJ, 743, 143
Huber, D., Zinn, J., Bojsen-Hansen, M., et al. 2017, ApJ, 844, 102
Jackiewicz, J. 2021, Front. Astron. Space Sci., 7, 102
Kallinger, T., De Ridder, J., Hekker, S., et al. 2014, A&A, 570, A41
Karoff, C., Metcalfe, T. S., Montet, B. T., et al. 2019, MNRAS, 485, 5096
Kim, K.-B., & Chang, H.-Y. 2021, New A, 84, 101522a
Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJ, 713, L79
Lebreton, Y., & Goupil, M. J. 2014, A&A, 569, A21
Lebreton, Y., Goupil, M. J., & Montalbán, J. 2014a, in EAS Pub. Ser., eds. Y. Lebreton, D. Valls-Gabaud, & C. Charbonnel, 65, 99
Lebreton, Y., Goupil, M. J., & Montalbán, J. 2014b, in EAS Pub. Ser., eds. Y. Lebreton, D. Valls-Gabaud, & C. Charbonnel, 65, 177
Lebreton, Y., & Montalbán, J. 2010, Ap&SS, 328, 29
Libbrecht, K. G. 1992, ApJ, 387, 712
Lochard, J. 2003, IAU Joint Discuss., 25, E25
Lund, M. N., & Reese, D. R. 2018, in Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds, eds. T. L. Campante, N. C. Santos, & M. J. P. F. G. Monteiro, Astrophys. Space Sci. Proc., 149
Lund, M. N., Silva Aguirre, V., Davies, G. R., et al. 2017, ApJ, 835, 172
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74
Mathur, S. 2014, in SF2A-2014: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, eds. J. Ballet, F. Martins, F. Bournaud, R. Monier, & C. Reylé, 257
Mathur, S., García, R. A., Bugnet, L., et al. 2019, Front. Astron. Space Sci., 6, 46
Mathur, S., García, R. A., Breton, S., et al. 2022, A&A, 657, A31
Maxted, P., & Creevey, O. 2023, sciencesconf.org:plato-stesci2023:469767
Metcalfe, T. S., Chaplin, W. J., Appourchaux, T., et al. 2012, ApJ, 748, L10
Metcalfe, T. S., Townsend, R. H. D., & Ball, W. H. 2023, Res. Notes AAS, 7, 164
Michel, E., Samadi, R., Baudin, F., et al. 2009, A&A, 495, 979
Miglio, A., Chiappini, C., Mosser, B., et al. 2017, Astron. Nachr., 338, 644
Moedas, N., Deal, M., Bossini, D., & Campilho, B. 2022, A&A, 666, A43
Montalto, M., Piotto, G., Marrese, P. M., et al. 2021, A&A, 653, A98
Morel, P., & Lebreton, Y. 2008, Ap&SS, 316, 61
Morel, T., Creevey, O. L., Montalbán, J., Miglio, A., & Willett, E. 2021, A&A, 646, A78
Moya, A., Barceló Forteza, S., Bonfanti, A., et al. 2018, A&A, 620, A203
Nascimbeni, V., Piotto, G., Börner, A., et al. 2022, A&A, 658, A31
Nsamba, B., Campante, T. L., Monteiro, M. J. P. F. G., et al. 2018, MNRAS, 477, 5052
Nsamba, B., Moedas, N., Campante, T. L., et al. 2021, MNRAS, 500, 54
Nsamba, B., Cunha, M. S., Rocha, C. I. S. A., et al. 2022, MNRAS, 514, 893
Ong, J. M. J., Basu, S., & McKeever, J. M. 2021, ApJ, 906, 54
Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34
Pérez Hernández, F., García, R. A., Mathur, S., Santos, A. R. G., & Régulo, C. 2019, Front. Astron. Space Sci., 6, 41