STAT Transcription Factors; Janus Kinases; Adult; Aged; Aged, 80 and over; Breast Implants/adverse effects; DNA Copy Number Variations; Female; Genome, Human; Humans; Janus Kinases/metabolism; Lymphoma, Large-Cell, Anaplastic/etiology; Lymphoma, Large-Cell, Anaplastic/genetics; Lymphoma, Large-Cell, Anaplastic/pathology; Middle Aged; Mutation/genetics; STAT Transcription Factors/metabolism; Epigenesis, Genetic; Signal Transduction; Breast Implants; Lymphoma, Large-Cell, Anaplastic; Mutation; Biochemistry; Immunology; Hematology; Cell Biology
Abstract :
[en] The oncogenic events involved in breast implant-associated anaplastic large cell lymphoma (BI-ALCL) remain elusive. To clarify this point, we have characterized the genomic landscape of 34 BI-ALCLs (15 tumor and 19 in situ subtypes) collected from 54 BI-ALCL patients diagnosed through the French Lymphopath network. Whole-exome sequencing (n = 22, with paired tumor/germline DNA) and/or targeted deep sequencing (n = 24) showed recurrent mutations of epigenetic modifiers in 74% of cases, involving notably KMT2C (26%), KMT2D (9%), CHD2 (15%), and CREBBP (15%). KMT2D and KMT2C mutations correlated with a loss of H3K4 mono- and trimethylation by immunohistochemistry. Twenty cases (59%) showed mutations in ≥1 member of the JAK/STAT pathway, including STAT3 (38%), JAK1 (18%), and STAT5B (3%), and in negative regulators, including SOCS3 (6%), SOCS1 (3%), and PTPN1 (3%). These mutations were more frequent in tumor-type samples than in situ samples (P = .038). All BI-ALCLs expressed pSTAT3, regardless of the mutational status of genes in the JAK/STAT pathway. Mutations in the EOMES gene (12%) involved in lymphocyte development, PI3K-AKT/mTOR (6%), and loss-of-function mutations in TP53 (12%) were also identified. Copy-number aberration (CNA) analysis identified recurrent alterations, including gains on chromosomes 2, 9p, 12p, and 21 and losses on 4q, 8p, 15, 16, and 20. Regions of CNA encompassed genes involved in the JAK/STAT pathway and epigenetic regulators. Our results show that the BI-ALCL genomic landscape is characterized by not only JAK/STAT activating mutations but also loss-of-function alterations of epigenetic modifiers.
Disciplines :
Hematology
Author, co-author :
Laurent, Camille ; Pathology and Cytology Department, Centre Hospitalo-Universitaire de Toulouse,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France ; Centre de Recherche en Cancerologie de Toulouse, INSERM, UMR1037 laboratoire d'excellence Toulouse Cancer (Labex TOUCAN), Paul Sabatier University Toulouse III, Toulouse, France
Nicolae, Alina; Pathology and Cytology Department, Centre Hospitalier Universitaire Hautepierre, Strasbourg, France ; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France
Laurent, Cécile ; Institut Carnot CALYM, Lymphoma Academic Research Organisation, Institut Carnot, Pierre-Bénite, France
Le Bras, Fabien; Lymphoid Malignancies Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France
Haioun, Corinne; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France ; Lymphoid Malignancies Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France
Fataccioli, Virginie; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France ; Department of Pathology, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
Amara, Nadia; Pathology and Cytology Department, Centre Hospitalo-Universitaire de Toulouse,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
Adélaïde, José; Department of Predictive Oncology, Institut Paoli-Calmettes, and ; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique UMR7258, Aix-Marseille University, UM105, Marseille, France
Guille, Arnaud; Department of Predictive Oncology, Institut Paoli-Calmettes, and ; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique UMR7258, Aix-Marseille University, UM105, Marseille, France
Schiano, Jean-Marc; Department of Hematology, Institut Paoli-Calmettes, Marseille, France
Tesson, Bruno; Institut Carnot CALYM, Lymphoma Academic Research Organisation, Institut Carnot, Pierre-Bénite, France
Traverse-Glehen, Alexandra; Pathology Department, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
Chenard, Marie-Pierre; Pathology and Cytology Department, Centre Hospitalier Universitaire Hautepierre, Strasbourg, France
Mescam, Lénaïg; Department of Bio-Pathology Institut Paoli-Calmettes, Marseille, France
Moreau, Anne; Pathology and Cytology Department, Centre Hospitalier Hôtel Dieu, Nantes, France
Chassagne-Clement, Catherine; Department of Bio-Pathology Pathology and Cytology Department, Centre Léon Bérard, Lyon, France
Somja, Joan ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Escudié, Frédéric; Pathology and Cytology Department, Centre Hospitalo-Universitaire de Toulouse,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
André, Marc; Department of Hematology, Centre Hospitalo-Universitaire UCLouvain Namur, Yvoir, Belgium
Martin, Nadine; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France
Lacroix, Laetitia; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France
Lemonnier, François; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France ; Lymphoid Malignancies Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France
Hamy, Anne-Sophie; Curie Institute, Residual Tumour and Response to Treatment Laboratory, RT2Lab, INSERM, U 932 Immunity and Cancer, Paris, France
Reyal, Fabien; Curie Institute, Residual Tumour and Response to Treatment Laboratory, RT2Lab, INSERM, U 932 Immunity and Cancer, Paris, France ; Curie Institute, Department of Surgery, Paris Descartes University, Paris, France
Bannier, Marie; Department of Surgery, Institut Paoli-Calmettes, Marseille, France
Oberic, Lucie; Hematology Department and
Prade, Nais; Laboratory of Hematology, Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire de Cancérologie de Toulouse, Toulouse, France, and
Frénois, François-Xavier; Pathology and Cytology Department, Centre Hospitalo-Universitaire de Toulouse,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
Beldi-Ferchiou, Asma ; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France ; Department of Immunobiology and Haematobiology, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
Delfau-Larue, Marie-Helene ; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France ; Department of Immunobiology and Haematobiology, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
Bouabdallah, Reda; Department of Hematology, Institut Paoli-Calmettes, Marseille, France
Birnbaum, Daniel; Department of Predictive Oncology, Institut Paoli-Calmettes, and ; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique UMR7258, Aix-Marseille University, UM105, Marseille, France
Brousset, Pierre; Pathology and Cytology Department, Centre Hospitalo-Universitaire de Toulouse,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France ; Centre de Recherche en Cancerologie de Toulouse, INSERM, UMR1037 laboratoire d'excellence Toulouse Cancer (Labex TOUCAN), Paul Sabatier University Toulouse III, Toulouse, France
Xerri, Luc; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique UMR7258, Aix-Marseille University, UM105, Marseille, France ; Department of Bio-Pathology Institut Paoli-Calmettes, Marseille, France
Gaulard, Philippe ; Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France ; Department of Pathology, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
This work was supported in part by institutional grants from the Institut National du Cancer (INCA, 2017-007), the Fondation pour la Recherche Médicale (FRM, Equipe Labellisée DEQ20160334875), the Leukemia Lymphoma Society (LLS SCOR 7013-17), the Laboratoire d’Excellence Toulouse Cancer (TOUCAN, contract ANR11-LABX), the Programme Hospitalo-Universitaire en Cancérologie CAPTOR (contract ANR11-PHUC0001), the Lymphome Study Association (LYSA), and the Institut Carnot Lymphome (CALYM).
Swerdlow S, Campo E, Harris NL, et al. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. Lyon, France: IARC; 2017.
Doren EL, Miranda RN, Selber JC, et al. U.S. epidemiology of breast implant-associated anaplastic large cell lymphoma. Plast Reconstr Surg. 2017;139(5):1042-1050.
Brody GS, Deapen D, Taylor CR, et al. Anaplastic large cell lymphoma occurring in women with breast implants: analysis of 173 cases. Plast Reconstr Surg. 2015;135(3): 695-705.
Therapeutic Goods Administration. Breast implants and anaplastic large cell lymphoma: update - outcomes from the TGA’s review of breast implants and breast tissue expanders. https://www.tga.gov.au/alert/breast-implantsupdate-tga-monitoring-anaplastic-large-celllymphoma. Accessed 28 November 2019.
Leberfinger AN, Behar BJ, Williams NC, et al. Breast implant-associated anaplastic large cell lymphoma: a systematic review. JAMA Surg. 2017;152(12):1161-1168.
Laurent C, Haioun C, Brousset P, Gaulard P. New insights into breast implant-associated anaplastic large cell lymphoma. Curr Opin Oncol. 2018;30(5):292-300.
Miranda RN, Aladily TN, Prince HM, et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol. 2014;32(2):114-120.
Laurent C, Delas A, Gaulard P, et al. Breast implant-associated anaplastic large cell lymphoma: two distinct clinicopathological variants with different outcomes. Ann Oncol. 2016;27(2):306-314.
Oishi N, Brody GS, Ketterling RP, et al. Genetic subtyping of breast implant-associated anaplastic large cell lymphoma. Blood. 2018;132(5):544-547.
Blombery P, Thompson E, Ryland GL, et al. Frequent activating STAT3 mutations and novel recurrent genomic abnormalities detected in breast implant-associated anaplastic large cell lymphoma. Oncotarget. 2018;9(90): 36126-36136.
Blombery P, Thompson ER, Jones K, et al. Whole exome sequencing reveals activating JAK1 and STAT3 mutations in breast implant-associated anaplastic large cell lymphoma anaplastic large cell lymphoma. Haematologica. 2016;101(9):e387-e390.
Di Napoli A, Jain P, Duranti E, et al. Targeted next generation sequencing of breast implant-associated anaplastic large cell lymphoma reveals mutations in JAK/STAT signalling pathway genes, TP53 and DNMT3A. Br J Haematol. 2018;180(5):741-744.
Letourneau A, Maerevoet M, Milowich D, et al. Dual JAK1 and STAT3 mutations in a breast implant-associated anaplastic large cell lymphoma. Virchows Arch. 2018;473(4):505-511.
Blombery P, Thompson ER, Prince HM. Molecular drivers of breast implant-associated anaplastic large cell lymphoma. Plast Reconstr Surg. 2019;143(3S):59S-64S.
Oishi N, Miranda RN, Feldman AL. Genetics of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). Aesthet Surg J. 2019; 39(suppl 1):S14-S20.
Laurent C, Baron M, Amara N, et al. Impact of expert pathologic review of lymphoma diagnosis: study of patients from the French Lymphopath Network. J Clin Oncol. 2017; 35(18):2008-2017.
Clemens MW, Medeiros LJ, Butler CE, et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J Clin Oncol. 2016;34(2):160-168.
Clemens MW, Jacobsen ED, Horwitz SM. 2019 NCCN consensus guidelines on the diagnosis and treatment of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). Aesthet Surg J. 2019;39(suppl 1):S3-S13.
Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213-219.
Lai D, Meyer IM. A comprehensive comparison of general RNA-RNA interaction prediction methods. Nucleic Acids Res. 2016; 44(7):e61.
Kim JM, Park JE, Yoo I, et al. Integrated transcriptomes throughout swine oestrous cycle reveal dynamic changes in reproductive tissues interacting networks. Sci Rep. 2018;8(1):5436.
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv.1207.3907. 2012.
Shen R, Seshan VE. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016;44(16):e131.
Le Bras F, Laurent C, Bosc R, et al. Breast implant associated-anaplastic large cell lymphoma (BIA-ALCL): the French Lymphoma Study Association (LYSA) registry data. ASH; 2018 (abstract 111659)
Crescenzo R, Abate F, Lasorsa E, et al; European T-Cell Lymphoma Study Group, T-Cell Project: Prospective Collection of Data in Patients with Peripheral T-Cell Lymphoma and the AIRC 5xMille Consortium “Genetics-Driven Targeted Management of Lymphoid Malignancies”. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma [published erratum appears in Cancer Cell. 2015; 27(5):744]. Cancer Cell. 2015;27(4):516-532.
Waldmann TA, Chen J. Disorders of the JAK/ STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu Rev Immunol. 2017;35(1):533-550.
Pizzi M, Margolskee E, Inghirami G. Pathogenesis of peripheral T cell lymphoma. Annu Rev Pathol. 2018;13(1):293-320.
Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366(1):95-96.
Lee G, Ryu HJ, Choi JW, et al. Characteristic gene alterations in primary gastrointestinal T- and NK-cell lymphomas. Leukemia. 2019; 33(7):1797-1832.
da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet. 2015;47(12):1465-1470.
Lemonnier F, Couronné L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012; 120(7):1466-1469.
Vallois D, Dobay MP, Morin RD, et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood. 2016;128(11):1490-1502.
Gill RM, Gabor TV, Couzens AL, Scheid MP. The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transformation. Mol Cell Biol. 2013;33(3):498-513.
Kadin ME, Deva A, Xu H, et al. Biomarkers provide clues to early events in the pathogenesis of breast implant-associated anaplastic large cell lymphoma. Aesthet Surg J. 2016;36(7):773-781.
Chen J, Zhang Y, Petrus MN, et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc Natl Acad Sci USA. 2017;114(15):3975-3980.
McKinney M, Moffitt AB, Gaulard P, et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 2017;7(4):369-379.
Roberti A, Dobay MP, Bisig B, et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun. 2016;7(1):12602.
Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061-1066.
Joosten M, Seitz V, Zimmermann K, et al. Histone acetylation and DNA demethylation of T cells result in an anaplastic large cell lymphoma-like phenotype. Haematologica. 2013;98(2):247-254.
Fernandez-Pol S, Ma L, Joshi RP, Arber DA. A survey of somatic mutations in 41 genes in a cohort of T-cell lymphomas identifies frequent mutations in genes involved in epigenetic modification. Appl Immunohistochem Mol Morphol. 2019;27(6):416-422.
Ford DJ, Dingwall AK. The cancer COMPASS: navigating the functions of MLL complexes in cancer [published correction appears in Cancer Genet. 2019;233-234:102]. Cancer Genet. 2015;208(5):178-191.
Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer. 2015;15(6):334-346.
Kiel MJ, Sahasrabuddhe AA, Rolland DCM, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome. Nat Commun. 2015;6(1):8470.
Schatz JH, Horwitz SM, Teruya-Feldstein J, et al. Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis. Leukemia. 2015;29(1):237-241.
Lee S, Park HY, Kang SY, et al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget. 2015;6(19): 17764-17776.
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343-357.
Koskela HL, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20): 1905-1913.
Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21(10): 1190-1198.
Ortega-Molina A, Boss IW, Canela A, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 2015;21(10):1199-1208.
Moffitt AB, Ondrejka SL, McKinney M, et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med. 2017;214(5):1371-1386.
Watatani Y, Sato Y, Miyoshi H, et al. Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling. Leukemia. 2019; 33(12):2867-2883.
Luchtel RA, Zimmermann MT, Hu G, et al. Recurrent MSCE116K mutations in ALK-negative anaplastic large cell lymphoma. Blood. 2019;133(26):2776-2789.
Palomero T, Couronné L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166-170.
Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011-1019.
Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371-375.