Embargo Until 11/Jan/2028 - Author postprint (1.03 MB)
This is the Accepted Manuscript of the article "SVDD control charts based on MEWMA technique for monitoring compositional data", published by Elsevier in Computers & Industrial Engineering on January 11, 2025. The final article is available at https://doi.org/10.1016/j.cie.2025.110865.
This accepted manuscript is subject to an embargo period and will be available for open access on ORBi starting January 11, 2028, which is 36 months after its initial publication date of January 11, 2025.
Statistical process control; Compositional data; Control chart; Isometric log-ratio; Dirichlet density; Support vector data description
Abstract :
[en] Monitoring compositional data (CoDa) using control charts has become increasingly important in Statistical Process Control (SPC). This study introduces two approaches for CoDa monitoring, utilizing support vector data description (SVDD) control charts in conjunction with the multivariate exponentially weighted moving average (MEWMA) technique, specifically focusing on Phase II monitoring processes. The proposed approaches use two transformation methods: the Dirichlet density transformation and the isometric log-ratio transformation.
We evaluate the effectiveness of the proposed SVDD control charts by computing the out-of-control zero-state Average Run Length ($\ARL_1$) using simulated data. Our results demonstrate that SVDD control charts detect anomalies more effectively than the traditional MEWMA control chart across various scenarios in monitoring CoDa. These findings contribute to the advancement of SPC and offer valuable insights for practitioners involved in CoDa monitoring across diverse applications.
Research Center/Unit :
HEC Liège Research - ULiège
Disciplines :
Computer science
Author, co-author :
Nguyen, Thi Thuy Van ; Université de Liège - ULiège > HEC Liège : UER > UER Opérations
Heuchenne, Cédric ; Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Statistique appliquée à la gestion et à l'économie
Tran, Kim Duc; Dong A University, Danang, Vietnam > IAD
Tartare, Guillaume; University of Lille, France > ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles
Tran, Kim Phuc; University of Lille, France > ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles
Language :
English
Title :
SVDD control charts based on MEWMA technique for monitoring Compositional Data
Ahsan, M., Khusna, H., Wibawati, Lee, M., Support vector data description with kernel density estimation (SVDD-KDE) control chart for network intrusion monitoring. Scientific Reports, 13(1), 2023, 19149.
Aitchison, J., The statistical analysis of compositional data (Monographs on statistics and applied probability). 1986, Chapman & Hall Ltd., London, (Reprinted in 2003 with additional material by The Blackburn Press).
Banerjee, A., Burlina, P., & Meth, R. (2007). Fast Hyperspectral Anomaly Detection via SVDD. In 2007 IEEE international conference on image processing, vol. 4. IV–101 – IV–104.
Boyles, R.A., Using the chi-square statistic to monitor compositional process data. Journal of Applied Statistics 24:5 (1997), 589–602.
Chen, S., Yu, J., Wang, S., Monitoring of complex profiles based on deep stacked denoising autoencoders. Computers & Industrial Engineering, 143, 2020, 106402.
Egozcue, J., Pawlowsky-Glahn, V., Groups of parts and their balances in compositional data analysis. Mathematical Geology 37:7 (2005), 795–828.
Egozcue, J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C., Isometric logratio transformations for compositional data analysis. Mathematical Geology 35:3 (2003), 279–300.
Fan, J., Feng, Y., Jiang, J., Tong, X., Feature augmentation via nonparametrics and selection (FANS) in high dimensional classification. Journal of the American Statistical Association 111 (2016), 275–287.
Gu, J., Cui, B., Lu, S., A classification framework for multivariate compositional data with Dirichlet feature embedding. Knowledge-Based Systems, 212, 2021, 106614.
Guevara-González, R., Vargas-Navas, J., Linero-Segrera, D., Profile monitoring for compositional data. Revista Colombiana de Estadística 37:1 (2014), 159–181.
Hankin, R., A Generalization of the Dirichlet Distribution. Journal of Statistical Software, 33, 2010.
Haq, A., Woodall, W., A critique on the use of the belief statistic for process monitoring. Quality and Reliability Engineering International, 2024.
Hariharan, H., Velu, R., On estimating Dirichlet parameters - a comparison of initial values. Journal of Statistical Computation and Simulation 48 (1993), 47–58.
Imran, M., Dai, H., Zaidi, F., Hu, X., Tran, K., Sun, J., Analyzing out-of-control signals of T2 control chart for compositional data using artificial neural networks. Expert Systems with Applications, 238, 2024, 122165.
Imran, M., Dai, H., Zaidi, F., Tran, K., Abbas, Z., Nazir, H., Incorporating principal component analysis into Hotelling T2 control chart for compositional data monitoring. Computers & Industrial Engineering, 186, 2023, 109755.
Imran, M., Sun, J., Hu, X., Zaidi, F., Tang, A., Investigating zero-state and steady-state performance of MEWMA-CoDa control chart using variable sampling interval. Journal of Applied Statistics, 2023, 1–22.
Imran, M., Sun, J., Zaidi, F., Abbas, Z., Nazir, H.Z., Effect of measurement errors on the multivariate CUSUM CoDa control chart for the manufacturing process. 2022 arXiv preprint arXiv:2201.12318.
Imran, M., Sun, J., Zaidi, F., Abbas, Z., Nazir, H., Multivariate cumulative sum control chart for compositional data with known and estimated process parameters. Quality and Reliability Engineering International 38:5 (2022), 2691–2714.
Imran, M., Sun, J., Zaidi, F., Abbas, Z., Nazir, H., On designing efficient multivariate exponentially weighted moving average control chart for compositional data using variable sample size. Journal of Statistical Computation and Simulation, 2022, 1–22.
Imran, M., Sun, J., Zaidi, F., Abbas, Z., Nazir, H., Evaluating the performance of variable sampling interval Hotelling T2 charting scheme for compositional data in the presence of measurement error. Quality and Reliability Engineering International, 2023.
Kumar, S., Choudhary, A., Kumar, M., Shankar, R., Tiwari, M.K., Kernel distance-based robust support vector methods and its application in developing a robust K-chart. International Journal of Production Research 44:1 (2006), 77–96.
Li, Y., Goodness-of-fit tests for Dirichlet distributions with applications. 2015, Bowling Green State University.
Maboudou-Tchao, E., Silva, I.R., Diawara, N., Monitoring the mean vector with Mahalanobis kernels. Quality Technology & Quantitative Management 15:4 (2018), 459–474.
Montgomery, D., Statistical quality control: A modern introduction. 7th ed., 2013, Wiley, New York.
Ng, K., Tian, G., Tang, M., Dirichlet and related distributions: Theory, methods and applications. 2011, John Wiley & Sons.
Nguyen, T., Heuchenne, C., Tran, K., Anomaly Detection for Compositional Data using VSI MEWMA control chart. IFAC-PapersOnLine 55:10 (2022), 1533–1538.
Ning, X., Tsung, F., Improved design of kernel distance–based charts using support vector methods. IIE Transactions 45:4 (2013), 464–476.
Ongaro, A., Migliorati, S., A generalization of the Dirichlet distribution. Journal of Multivariate Analysis 114 (2013), 412–426.
Pauwels, E., Ambekar, O., One Class Classification for Anomaly Detection: Support Vector Data Description Revisited. Perner, P., (eds.) Advances in data mining. applications and theoretical aspects, 2011, Springer Berlin Heidelberg, 25–39.
Pawlowsky-Glahn, V., Egozcue, J., Tolosana-Delgado, R., Modeling and analysis of compositional data. 2015, John Wiley & Sons.
Smola, A., Scholkopf, B., Muller, K., The connection between regularization operators and support vector kernels. Neural Networks, 1998, 637–649.
Suh, E., Dirichlet MLE python library. 2020 GitHub, https://github.com/ericsuh/dirichlet.
Sun, R., Tsung, F., A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research 41:13 (2003), 2975–2989.
Tang, A., Castagliola, P., Hu, X., Xie, F., An assessment for the conditional performance of an support vector data description (SVDD)-based chart. Quality and Reliability Engineering International, 2022, 1–17.
Tax, D., Duin, R.P.W., Support Vector Data Description. Machine Learning 54:1 (2004), 45–66.
Tran, K., Castagliola, P., Celano, G., Khoo, M.B., Monitoring compositional data using multivariate exponentially weighted moving average scheme. Quality and Reliability Engineering International 34:3 (2017), 391–402.
Vapnik, V.N., Statistical learning theory. 1998, John Wiley & Sons.
Verna, E., Genta, G., Galetto, M., Franceschini, F., Defects-per-unit control chart for assembled products based on defect prediction models. International Journal of Advanced Manufacturing Technology, 2022, 1–12.
Vives-Mestres, M., Daunis-I-Estadella, J., Martin-Fernandez, J., Individual T2 control chart for compositional data. Journal of Quality Technology 46:2 (2014), 127–139.
Vives-Mestres, M., Daunis-I-Estadella, J., Martin-Fernandez, J., Out-of-control signals in three-part compositional T2 control chart. Quality and Reliability Engineering International 30:3 (2014), 337–346.
Vives-Mestres, M., Daunis-I-Estadella, J., Martin-Fernandez, J., Signal interpretation in hotelling's T2 control chart for compositional data. IIE Transactions 48:7 (2016), 661–672.
Yan, H., Paynabar, K., Shi, J., Real-time monitoring of high-dimensional functional data streams via spatio-temporal smooth sparse decomposition. Technometrics 60:2 (2018), 181–197.
Yeganeh, A., Shadman, A., Using evolutionary artificial neural networks in monitoring binary and polytomous logistic profiles. Journal of Manufacturing Systems 61 (2021), 546–561.
Zaidi, F., Castagliola, P., Tran, K., Khoo, M.B.C., Performance of the Hotelling T2 control chart for compositional data in the presence of measurement errors. Journal of Applied Statistics 46:14 (2019), 2583–2602.
Zaidi, F., Dai, H., Imran, M., Tran, K., Analyzing abnormal pattern of Hotelling T2 control chart for compositional data using artificial neural networks. Computers & Industrial Engineering, 180, 2023, 109254.
Zaidi, F., Dai, H., Imran, M., Tran, K., Monitoring autocorrelated compositional data vectors using an enhanced residuals Hotelling T2 control chart. Computers & Industrial Engineering, 181, 2023, 109280.
Zaidi, P., Tran, K., Khoo, M.B.C., Performance of the MEWMA-CoDa control chart in the presence of measurement errors. Quality and Reliability Engineering International 36:7 (2020), 2411–2440.
Zhang, Z., Deng, X., Anomaly detection using improved deep SVDD model with data structure preservation. Pattern Recognition Letters 148 (2021), 1–6.