Article (Scientific journals)
SVDD control charts based on MEWMA technique for monitoring Compositional Data
Nguyen, Thi Thuy Van; Heuchenne, Cédric; Tran, Kim Duc et al.
2025In Computers and Industrial Engineering, 201
Peer Reviewed verified by ORBi
 

Files


Full Text
MEWMA_SVDD-ORBi.pdf
Embargo Until 11/Jan/2028 - Author postprint (1.03 MB) Creative Commons License - Attribution, Non-Commercial, No Derivative
This is the Accepted Manuscript of the article "SVDD control charts based on MEWMA technique for monitoring compositional data", published by Elsevier in Computers & Industrial Engineering on January 11, 2025. The final article is available at https://doi.org/10.1016/j.cie.2025.110865. This accepted manuscript is subject to an embargo period and will be available for open access on ORBi starting January 11, 2028, which is 36 months after its initial publication date of January 11, 2025.
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Statistical process control; Compositional data; Control chart; Isometric log-ratio; Dirichlet density; Support vector data description
Abstract :
[en] Monitoring compositional data (CoDa) using control charts has become increasingly important in Statistical Process Control (SPC). This study introduces two approaches for CoDa monitoring, utilizing support vector data description (SVDD) control charts in conjunction with the multivariate exponentially weighted moving average (MEWMA) technique, specifically focusing on Phase II monitoring processes. The proposed approaches use two transformation methods: the Dirichlet density transformation and the isometric log-ratio transformation. We evaluate the effectiveness of the proposed SVDD control charts by computing the out-of-control zero-state Average Run Length ($\ARL_1$) using simulated data. Our results demonstrate that SVDD control charts detect anomalies more effectively than the traditional MEWMA control chart across various scenarios in monitoring CoDa. These findings contribute to the advancement of SPC and offer valuable insights for practitioners involved in CoDa monitoring across diverse applications.
Research Center/Unit :
HEC Liège Research - ULiège
Disciplines :
Computer science
Author, co-author :
Nguyen, Thi Thuy Van  ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations
Heuchenne, Cédric ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Statistique appliquée à la gestion et à l'économie
Tran, Kim Duc;  Dong A University, Danang, Vietnam > IAD
Tartare, Guillaume;  University of Lille, France > ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles
Tran, Kim Phuc;  University of Lille, France > ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles
Language :
English
Title :
SVDD control charts based on MEWMA technique for monitoring Compositional Data
Publication date :
11 January 2025
Journal title :
Computers and Industrial Engineering
ISSN :
0360-8352
eISSN :
1879-0550
Publisher :
Elsevier, Oxford, United Kingdom
Volume :
201
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ULiège - Université de Liège
Available on ORBi :
since 21 January 2025

Statistics


Number of views
9 (5 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi