[en] Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Romero, Miguel F ; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Krall, Jeffrey B ; Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
Nichols, Parker J ; Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
Vantreeck, Jillian ; Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
Henen, Morkos A; Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
Dejardin, Emmanuel ; Université de Liège - ULiège > GIGA > GIGA Immunobiology - Molecular Immunology and Signal Transduction
Schulz, Frederik ; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA. Electronic address: fschulz@lbl.gov
Vicens, Quentin ; Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA. Electronic address: qvicens@central.uh.edu
Vögeli, Beat ; Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA. Electronic address: beat.vogeli@cuanschutz.edu
Diallo, Mamadou Amadou ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Language :
English
Title :
Novel Z-DNA binding domains in giant viruses.
Publication date :
August 2024
Journal title :
Journal of Biological Chemistry
ISSN :
0021-9258
eISSN :
1083-351X
Publisher :
American Society for Biochemistry and Molecular Biology Inc., United States
The work conducted by the U.S. Department of Energy Joint Genome Institute ( https://ror.org/04xm1d337 ), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.We gratefully acknowledge the National Science Foundation (Award #2153787 to Q.V. and B.V.), and the National Institutes of Health (Award #1F31AI167396 to P.N.).
Wang, A.H.J., Quigley, G.J., Kolpak, F.J., Crawford, J.L., Van Boom, J.H., Van Der Marel, G., et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282 (1979), 680–686.
Hall, K., Cruz, P., Tinoco, I., Jovin, T.M., Van De Sande, J.H., Z-RNA’–a left-handed RNA double helix. Nature 311 (1984), 584–586.
Miglietta, G., Russo, M., Capranico, G., G-quadruplex-R-loop interactions and the mechanism of anticancer G-quadruplex binders. Nucleic Acids Res. 48 (2020), 11942–11957.
Karki, R., Kanneganti, T.D., ADAR1 and ZBP1 in innate immunity, cell death, and disease. Trends Immunol. 44 (2023), 201–216.
Nichols, P.J., Krall, J.B., Henen, M.A., Vögeli, B., Vicens, Q., Z-RNA biology: a central role in the innate immune response?. RNA 29 (2023), 273–281.
Song, J., Gooding, A.R., Hemphill, W.O., Love, B.D., Robertson, A., Yao, L., et al. Structural basis for inactivation of PRC2 by G-quadruplex RNA. Science 381 (2023), 1331–1337.
Thapa, R.J., Ingram, J.P., Ragan, K.B., Nogusa, S., Boyd, D.F., Benitez, A.A., et al. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe 20 (2016), 674–681.
Lei, Y., VanPortfliet, J.J., Chen, Y.-F., Bryant, J.D., Li, Y., Fails, D., et al. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell 186 (2023), 3013–3032.e22.
Herbert, A.G., Spitzner, J.R., Lowenhaupt, K., Rich, A., Z-DNA binding protein from chicken blood nuclei. Proc. Natl. Acad. Sci. U. S. A. 90 (1993), 3339–3342.
Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A., Rich, A., Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284 (1999), 1841–1845.
Schwartz, T., Behlke, J., Lowenhaupt, K., Heinemann, U., Rich, A., Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct. Biol., 2001, 10.1038/nsb0901-761.
Rothenburg, S., Deigendesch, N., Dittmar, K., Koch-Nolte, F., Haag, F., Lowenhaupt, K., et al. A PKR-like eukaryotic initiation factor 2alpha kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 1602–1607.
Kim, Y.-G., Muralinath, M., Brandt, T., Pearcy, M., Hauns, K., Lowenhaupt, K., et al. A role for Z-DNA binding in vaccinia virus pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 6974–6979.
Tome, A.R., Kus, K., Correia, S., Paulo, L.M., Zacarias, S., de Rosa, M., et al. Crystal structure of a poxvirus-like Zalpha domain from cyprinid herpesvirus 3. J. Virol. 87 (2013), 3998–4004.
Sun, L., Miao, Y., Wang, Z., Chen, H., Dong, P., Zhang, H., et al. Structural insight into African swine fever virus I73R protein reveals it as a Z-DNA binding protein. Transbound. Emerg. Dis. 69 (2022), e1923–e1935.
Liddicoat, B.J., Piskol, R., Chalk, A.M., Ramaswami, G., Higuchi, M., Hartner, J.C., et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349 (2015), 1115–1120.
Oh, D.-B., Kim, Y.-G., Rich, A., Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc. Nat. Acad. Sci. U. S. A. 99 (2002), 16666–16671.
Liu, Y., Shen, Z., Xie, Z., Song, Y., Li, Y., Liang, R., et al. African swine fever virus I73R is a critical virulence-related gene: a potential target for attenuation. Proc. Natl. Acad. Sci. U. S. A., 120, 2023, e2210808120.
Diallo, M.A., Pirotte, S., Hu, Y., Morvan, L., Rakus, K., Suárez, N.M., et al. A fish herpesvirus highlights functional diversities among Zα domains related to phase separation induction and A-to-Z conversion. Nucleic Acids Res. 51 (2023), 806–830.
Vijaysri, S., Talasela, L., Mercer, A.A., Mcinnes, C.J., Jacobs, B.L., Langland, J.O., The Orf virus E3L homologue is able to complement deletion of the vaccinia virus E3L gene in vitro but not in vivo. Virology 314 (2003), 305–314.
Bartas, M., Slychko, K., Brázda, V., Červeň, J., Beaudoin, C.A., Blundell, T.L., et al. Searching for new Z-DNA/Z-RNA binding proteins based on structural similarity to experimentally validated Zα domain. Int. J. Mol. Sci., 23, 2022, 768.
Nikpour, N., Salavati, R., The RNA binding activity of the first identified trypanosome protein with Z-DNA-binding domains. Sci. Rep., 9, 2019, 5904.
Huang, L., Tian, X., Liu, M., Wang, M., Biville, F., Cheng, A., et al. DprA is essential for natural competence in riemerella anatipestifer and has a conserved evolutionary mechanism. Front. Genet., 10, 2019, 429.
Langeberg, C.J., Nichols, P.J., Henen, M.A., Vicens, Q., Vögeli, B., Differential structural features of two mutant ADAR1p150 Zα domains associated with aicardi-goutières syndrome. J. Mol. Biol., 435, 2023, 168040.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 (2021), 583–589.
Placido, D., Brown, B.A., Lowenhaupt, K., Rich, A., Athanasiadis, A., A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure 15 (2007), 395–404.
Schulz, F., Roux, S., Paez-Espino, D., Jungbluth, S., Walsh, D.A., Denef, V.J., et al. Giant virus diversity and host interactions through global metagenomics. Nature 578 (2020), 432–436.
Bäckström, D., Yutin, N., Jørgensen, S.L., Dharamshi, J., Homa, F., Zaremba-Niedwiedzka, K., et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio, 10, 2019, e02497-18.
Rigou, S., Christo-Foroux, E., Santini, S., Goncharov, A., Strauss, J., Grosse, G., et al. Metagenomic survey of the microbiome of ancient Siberian permafrost and modern Kamchatkan cryosols. microLife, 3, 2022, uqac003.
Kuś, K., Rakus, K., Boutier, M., Tsigkri, T., Gabriel, L., Vanderplasschen, A., et al. The structure of the cyprinid herpesvirus 3 ORF112-Zα·Z-DNA complex reveals a mechanism of nucleic acids recognition conserved with E3L, a poxvirus inhibitor of interferon response. J. Biol. Chem. 290 (2015), 30713–30725.
Schulz, F., Abergel, C., Woyke, T., Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat. Rev. Microbiol. 20 (2022), 721–736.
Queiroz, V.F., Tatara, J.M., Botelho, B.B., Rodrigues, R.A.L., Almeida, G.M.F., Abrahao, J.S., The consequences of viral infection on protists. Commun. Biol., 7, 2024, 306.
Basto, A.P., Nix, R.J., Boinas, F., Mendes, S., Silva, M.J., Cartaxeiro, C., et al. Kinetics of African swine fever virus infection in Ornithodoros erraticus ticks. J. Gen. Virol. 87 (2006), 1863–1871.
Brown, B.A., Lowenhaupt, K., Wilbert, C.M., Hanlon, E.B., Rich, A., The Zα domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 13532–13536.
Krall, J.B., Nichols, P.J., Henen, M.A., Vicens, Q., Vögeli, B., Structure and formation of Z-DNA and Z-RNA. Molecules, 28, 2023, 843.
Nichols, P.J., Krall, J.B., Henen, M.A., Welty, R., Macfadden, A., Vicens, Q., et al. Z-form adoption of nucleic acid is a multi-step process which proceeds through a melted intermediate. J. Am. Chem. Soc., 146, 2023, 694.
Kim, Y.G., Lowenhaupt, K., Oh, D.B., Kim, K.K., Rich, A., Evidence that vaccinia virulence factor E3L binds to Z-DNA in vivo: implications for development of a therapy for poxvirus infection. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 1514–1518.
Van quyen, D., Ha, S.C., Lowenhaupt, K., Rich, A., Kim, K.K., Kim, Y.G., Characterization of DNA-binding activity of Zα domains from poxviruses and the importance of the β-wing regions in converting B-DNA to Z-DNA. Nucleic Acids Res. 35 (2007), 7714–7720.
Kim, D., Hur, J., Park, K., Bae, S., Shin, D., Ha, S.C., et al. Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ). Nucleic Acids Res. 42 (2014), 5937–5948.
Park, C., Zheng, X., Park, C.Y., Kim, J., Lee, S.K., Won, H., et al. Dual conformational recognition by Z-DNA binding protein is important for the B-Z transition process. Nucleic Acids Res. 48 (2020), 12957–12971.
Ariyoshi, M., Nishino, T., Iwasaki, H., Shinagawa, H., Morikawa, K., Crystal structure of the holliday junction DNA in complex with a single RuvA tetramer. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 8257–8262.
Devaraj, A., Buzzo, J.R., Mashburn-Warren, L., Gloag, E.S., Novotny, L.A., Stoodley, P., et al. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc. Natl. Acad. Sci. U. S. A. 116 (2019), 25068–25077.
Buzzo, J.R., Devaraj, A., Gloag, E.S., Stoodley, P., Bakaletz, L.O., Goodman Correspondence, S.D., et al. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 184 (2021), 5740–5758.e17.
Salas-Jara, M.J., Ilabaca, A., Vega, M., García, A., Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 4, 2016, 35.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool. J. Mol. Biol. 215 (1990), 403–410.
Letunic, I., Khedkar, S., Bork, P., SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49 (2021), D458–D460.
de Castro, E., Sigrist, C.J.A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34 (2006), W362–W365.
Sigrist, C.J.A., de Castro, E., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A., et al. New and continuing developments at PROSITE. Nucleic Acids Res. 41 (2013), D344–D347.
Tamura, K., Stecher, G., Kumar, S., MEGA11: molecular evolutionary Genetics analysis version 11. Mol. Biol. Evol. 38 (2021), 3022–3027.
Okonechnikov, K., Golosova, O., Fursov, M., Varlamov, A., Vaskin, Y., Efremov, I., et al. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28 (2012), 1166–1167.
Tung, C.H., Yang, J.M., FastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies. Nucleic Acids Res. 35 (2007), W438–W443.
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., Steinegger, M., ColabFold: making protein folding accessible to all. Nat. Methods 19 (2022), 679–682.
Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27 (2018), 14–25.
Yang, J.M., Tung, C.H., Protein structure database search and evolutionary classification. Nucleic Acids Res. 34 (2006), 3646–3659.
TSA: Noctiluca scintillans, MMETSP0253-doi:10.5281-zenodo.249982-Transcript-1000, transcribed RNA Sequence.National Library of Medicine Bethesda, MD 20894.
Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28 (2012), 3150–3152.
Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 (2013), 772–780.
Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50 (2022), D20–D26.
Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (2009), 1972–1973.
Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 (2015), 268–274.
Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., Vinh, L.S., UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 (2018), 518–522.
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A., Jermiin, L.S., ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 (2017), 587–589.
Letunic, I., Bork, P., Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (2021), W293–W296.
Aylward, F.O., Moniruzzaman, M., Ha, A.D., Koonin, E.V., A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol., 19, 2021, e3001430.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37 (2020), 1530–1534.
Aktaş, T., Ilik, I.A., Maticzka, D., Bhardwaj, V., Pessoa Rodrigues, C., Mittler, G., et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544 (2017), 115–119.
Li, Y., Slavik, K.M., Toyoda, H.C., Morehouse, B.R., de Oliveira Mann, C.C., Elek, A., et al. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 186 (2023), 3261–3276.e20.
Krishna, P., Morgan, A.R., Van de Sande, J.H., Interaction of recA protein with left-handed Z-DNA. Biochem. J. 275 (1991), 711–719.
Herbert, A., Poptsova, M., Z-RNA and the flipside of the SARS Nsp13 helicase: is there a role for flipons in coronavirus-induced pathology?. Front. Immunol., 13, 2022, 912717.