Evaluation of Currently Available Laboratory Methods to Detect Terbinafine Resistant Dermatophytes Including a Gradient Strip for Terbinafine, EUCAST Microdilution E.Def 11.0, a Commercial Real-Time PCR Assay, Squalene Epoxidase Sequencing and Whole Genome Sequencing.
Sacheli, Rosalie; Egrek, Sabrina; El Moussaoui, Khalidet al.
[en] [en] BACKGROUND: Terbinafine resistance in dermatophytes is an increasing problem worldwide. Several outbreaks of terbinafine-resistant dermatophytosis are currently occurring in India and surrounding countries, and these recent years, European countries have also been affected by this issue. Currently, antifungal susceptibility testing of dermatophytes is not routinely performed in clinical laboratories.
OBJECTIVES: Given the current situation and associated public health concerns, there is an urgent need for accurate and rapid detection of terbinafine resistance in laboratories. Therefore, we evaluated different methods currently available for the detection of terbinafine resistance in dermatophytes.
METHODS: Twenty-eight strains previously identified as T. indotineae/mentagrophytes/interdigitale were concurrently characterised using terbinafine gradient strips (HiMedia), EUCAST E.Def 11.0 microdilution, the DermaGenius resistance PCR assay (PathoNostics), and SQLE sequencing. These four methods were compared to terbinafine resistance characterisation obtained by whole genome sequencing (WGS).
RESULTS: All four evaluated methods were able to detect terbinafine resistant strains either by showing high MICs (> 0.125 μg/mL) or by detecting SQLE substitutions.
CONCLUSIONS: The gradient strips, despite questionable essential agreement with EUCAST E.Def 11.0, can be an easy, fast and cheap method to screen terbinafine resistance among dermatophytes in clinical laboratories. The DermaGenius resistance PCR assay enables rapid detection of the most common substitutions in SQLE associated with terbinafine resistance. However, its inability to precisely determine specific substitutions on SQLE or identify new ones may pose a problem in the future. These limitations can be addressed by using SQLE sequencing or whole genome sequencing (WGS).
Disciplines :
Microbiology
Author, co-author :
Sacheli, Rosalie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Egrek, Sabrina ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
El Moussaoui, Khalid ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
DARFOUF, Rajae ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Adjetey, Akole Bahun; Department of Clinical Microbiology, Belgian National Reference Center for Mycoses, Center for Interdisciplinary Research on Medicines Liège, University Hospital of Liege, Liege, Belgium
Hayette, Marie-Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Language :
English
Title :
Evaluation of Currently Available Laboratory Methods to Detect Terbinafine Resistant Dermatophytes Including a Gradient Strip for Terbinafine, EUCAST Microdilution E.Def 11.0, a Commercial Real-Time PCR Assay, Squalene Epoxidase Sequencing and Whole Genome Sequencing.
A. Singh, A. Masih, A. Khurana, et al., “High Terbinafine Resistance in Trichophyton interdigitale Isolates in Delhi, India Harbouring Mutations in the Squalene Epoxidase Gene,” Mycoses 61 (2018): 477–484, https://doi.org/10.1111/myc.12772.
A. Singh, A. Masih, J. Monroy-Nieto, et al., “A Unique Multidrug-Resistant Clonal Trichophyton Population Distinct From Trichophyton mentagrophytes/Trichophyton interdigitale Complex Causing an Ongoing Alarming Dermatophytosis Outbreak in India: Genomic Insights and Resistance Profile,” Fungal Genetics and Biology 133 (2019): 103266, https://doi.org/10.1016/j.fgb.2019.103266.
S. Uhrlaß, S. B. Verma, Y. Gräser, et al., “Trichophyton Indotineae—An Emerging Pathogen Causing Recalcitrant Dermatophytoses in India and Worldwide—A Multidimensional Perspective,” Journal of Fungi 8, no. 7 (2022): 757, https://doi.org/10.3390/jof8070757.
R. Kano, U. Kimura, M. Kakurai, et al., “Trichophyton Indotineae Sp. Nov.: A New Highly Terbinafine-Resistant Anthropophilic Dermatophyte Species,” Mycopathologia 185 (2020): 947–958, https://doi.org/10.1007/s11046-020-00455-8.
C. Tang, X. Kong, S. A. Ahmed, et al., “Taxonomy of the Trichophyton mentagrophytes/T. interdigitale Species Complex Harboring the Highly Virulent, Multiresistant Genotype T. Indotineae,” Mycopathologia 186, no. 3 (2021): 315–326, https://doi.org/10.1007/s11046-021-00544-2.
A. Ebert, M. Monod, K. Salamin, et al., “Alarming India-Wide Phenomenon of Antifungal Resistance in Dermatophytes: A Multicentre Study,” Mycoses 63 (2020): 717–728, https://doi.org/10.1111/myc.13091.
P. Kumar, S. Ramachandran, S. Das, S. N. Bhattacharya, and B. Taneja, “Insights Into Changing Dermatophyte Spectrum in India Through Analysis of Cumulative 161,245 Cases Between 1939 and 2021,” Mycopathologia 188, no. 3 (2023): 183–202, https://doi.org/10.1007/s11046-023-00720-6.
A. Jabet, S. Brun, A. C. Normand, et al., “Extensive Dermatophytosis Caused by Terbinafine-Resistant Trichophyton Indotineae, France,” Emerging Infectious Diseases 28, no. 1 (2022): 229–233, https://doi.org/10.3201/eid2801.210883.
R. Sacheli, S. Harag, F. Dehavay, et al., “Belgian National Survey on Tinea Capitis: Epidemiological Considerations and Highlight of Terbinafine-Resistant T. mentagrophytes With a Mutation on SQLE Gene,” Journal of Fungi 6 (2020): 195, https://doi.org/10.3390/jof6040195.
M. Siopi, I. Efstathiou, K. Theodoropoulos, S. Pournaras, and J. Meletiadis, “Molecular Epidemiology and Antifungal Susceptibility of Trichophyton Isolates in Greece: Emergence of Terbinafine-Resistant Trichophyton mentagrophytes Type Viii Locally and Globally,” Journal of Fungi 7, no. 6 (2021): 419, https://doi.org/10.3390/jof7060419.
J. J. Shen, M. C. Arendrup, S. Verma, and D. M. L. Saunte, “The Emerging Terbinafine-Resistant Trichophyton Epidemic: What Is the Role of Antifungal Susceptibility Testing?,” Dermatology 238 (2021): 60–79, https://doi.org/10.1159/000515290.
K. M. T. Astvad, R. K. Hare, K. M. Jørgensen, D. M. L. Saunte, P. K. Thomsen, and M. C. Arendrup, “Increasing Terbinafine Resistance in Danish Trichophyton Isolates 2019–2020,” Journal of Fungi 8, no. 2 (2022): 150, https://doi.org/10.3390/jof8020150.
G. Russo, L. Toutous Trellu, L. Fontao, and B. Ninet, “Towards an Early Clinical and Biological Resistance Detection in Dermatophytosis: About 2 Cases of Trichophyton Indotineae,” Journal of Fungi 9, no. 7 (2023): 733, https://doi.org/10.3390/jof9070733.
F. Messina, G. Santiso, M. Romero, A. Bonifaz, M. Fernandez, and E. Marin, “First Case Report of Tinea Corporis Caused by Trichophyton indotineae in Latin America,” Medical Mycology Case Reports 41 (2023): 41–51, https://doi.org/10.1016/j.mmcr.2023.08.004.
S. Verma and R. Madhu, “The Great Indian Epidemic of Superficial Dermatophytosis: An Appraisal,” Indian Journal of Dermatology 62 (2017): 227–236, https://doi.org/10.4103/ijd.IJD_206_17.
A. Süß, S. Uhrlaß, A. Ludes, et al., “Extensive Tinea Corporis due to a Terbinafine-Resistant Trichophyton mentagrophytes Isolate of the Indian Genotype in a Young Infant From Bahrain in Germany,” Hautarzt 70 (2019): 888–896, https://doi.org/10.1007/s00105-019-4431-7.
R. Thakur, P. Kushwaha, and A. S. Kalsi, “Tinea Universalis due to Trichophyton indotineae in an Adult Male,” Indian Journal of Medical Microbiology 46 (2023): 46, https://doi.org/10.1016/j.ijmmb.2023.100476.
T. Yamada, M. Maeda, M. M. Alshahni, et al., “Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene,” Antimicrobial Agents and Chemotherapy 61, no. 7 (2017): e00115-17, https://doi.org/10.1128/AAC.00115-17.
R. Sacheli and M. P. Hayette, “Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies,” Journal of Fungi 7, no. 11 (2021): 983, https://doi.org/10.3390/jof7110983.
C. S. Osborne, I. Leitner, B. Favre, and N. S. Ryder, “Amino Acid Substitution in Trichophyton rubrum Squalene Epoxidase Associated With Resistance to Terbinafine,” Antimicrobial Agents and Chemotherapy 49 (2005): 2840–2844, https://doi.org/10.1128/AAC.49.7.2840-2844.2005.
S. Taghipour, F. Shamsizadeh, I. M. Pchelin, et al., “Emergence of Terbinafine Resistant Trichophyton mentagrophytes in Iran, Harboring Mutations in the Squalene Epoxidase (Sqle) Gene,” Infection and Drug Resistance 13 (2020): 845–850, https://doi.org/10.2147/IDR.S246025.
S. M. Rudramurthy, S. A. Shankarnarayan, S. Dogra, et al., “Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton Rubrum Associated With Allylamine Resistance,” Antimicrobial Agents and Chemotherapy 62 (2018): e02522-17, https://doi.org/10.1128/AAC.02522-17.
X. Kong, C. Tang, A. Singh, et al., “Antifungal Susceptibility and Mutations in the Squalene Epoxidase Gene in Dermatophytes of the Trichophyton Mentagrophytes Species Complex,” Antimicrobial Agents and Chemotherapy 65 (2021): e0005621, https://doi.org/10.1128/aac.00056-21.
M. C. Arendrup, K. M. Jørgensen, J. Guinea, et al., “Multicentre Validation of a EUCAST Method for the Antifungal Susceptibility Testing of Microconidia-Forming Dermatophytes,” Journal of Antimicrobial Chemotherapy 75 (2020): 1807–1819, https://doi.org/10.1093/jac/dkaa111.
M. C. Arendrup, G. Kahlmeter, J. Guinea, J. Meletiadis, and Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST), “How to: Perform Antifungal Susceptibility Testing of Microconidia-Forming Dermatophytes Following the New Reference EUCAST Method E.Def 11.0, Exemplified by Trichophyton,” Clinical Microbiology and Infection 27 (2021): 55–60, https://doi.org/10.1016/j.cmi.2020.08.042.
S. Andrews, “FastQC, a quality control tool for high throughput sequence data,” 2010.
P. Ewels, M. Magnusson, S. Lundin, and M. Käller, “MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report,” Bioinformatics 32, no. 19 (2016): 3047–3048, https://doi.org/10.1093/bioinformatics/btw354.
S. Chen, Y. Zhou, Y. Chen, and J. Gu, “Fastp: An Ultra-Fast All-In-One FASTQ Preprocessor,” Bioinformatics 34, no. 17 (2018): i884–i890, https://doi.org/10.1093/bioinformatics/bty560.
A. Prjibelski, D. Antipov, D. Meleshko, A. Lapidus, and A. Korobeynikov, “Using SPAdes De Novo Assembler,” Current Protocols in Bioinformatics 70, no. 1 (2020): e102, https://doi.org/10.1002/cpbi.102.
A. Bankevich, S. Nurk, D. Antipov, et al., “SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing,” Journal of Computational Biology 19, no. 5 (2012): 455–477, https://doi.org/10.1089/cmb.2012.0021.
S. I. Nikolenko, A. I. Korobeynikov, and M. A. Alekseyev, “BayesHammer: Bayesian Clustering for Error Correction in Single-Cell Sequencing,” BMC Genomics 14, no. Suppl 1 (2013): S7, https://doi.org/10.1186/1471-2164-14-S1-S7.
M. Manni, M. R. Berkeley, M. Seppey, F. A. Simão, and E. M. Zdobnov, “BUSCO Update: Novel and Streamlined Workflows Along With Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes,” Molecular Biology and Evolution 38, no. 10 (2021): 4647–4654, https://doi.org/10.1093/molbev/msab199.
E. Levy Karin, M. Mirdita, and J. Söding, “MetaEuk—Sensitive, High-Throughput Gene Discovery, and Annotation for Large-Scale Eukaryotic Metagenomics,” Microbiome 8, no. 1 (2020): 48, https://doi.org/10.1186/s40168-020-00808-x.
H. Jung, T. Ventura, J. S. Chung, et al., “Twelve Quick Steps for Genome Assembly and Annotation in the Classroom,” PLoS Computational Biology 16, no. 11 (2020): e1008325, https://doi.org/10.1371/journal.pcbi.1008325.
A. L. Bidaud, A. Moreno-Sabater, A. C. Normand, et al., “Evaluation of Gradient Concentration Strips for Detection of Terbinafine Resistance in Trichophyton Spp,” Antimicrobial Agents and Chemotherapy 67, no. 6 (2023): e0171622, https://doi.org/10.1128/aac.01716-22.
D. M. L. Saunte, R. K. Hare, K. M. Jørgensen, et al., “Emerging Terbinafine Resistance in Trichophyton: Clinical Characteristics, Squalene Epoxidase Gene Mutations, and a Reliable EUCAST Method for Detection,” Antimicrobial Agents and Chemotherapy 63 (2019): e01126-19, https://doi.org/10.1128/AAC.01126-19.
A. Burmester, U. C. Hipler, R. Hensche, P. Elsner, and C. Wiegand, “Point Mutations in the Squalene Epoxidase Gene of Indian ITS Genotype VIII T. Mentagrophytes Identified After DNA Isolation From Infected Scales,” Medical Mycology Case Reports 26 (2019): 23–24, https://doi.org/10.1016/j.mmcr.2019.09.001.
D. Łagowski, S. Gnat, A. Nowakiewicz, M. Osińska, and M. Dyląg, “Intrinsic Resistance to Terbinafine Among Human and Animal Isolates of Trichophyton Mentagrophytes Related to Amino Acid Substitution in the Squalene Epoxidase,” Infection 48, no. 6 (2020): 889–897, https://doi.org/10.1007/s15010-020-01498-1.
A. Burmester, U. C. Hipler, S. Uhrlaß, et al., “Indian Trichophyton Mentagrophytes Squalene Epoxidase erg1 Double Mutants Show High Proportion of Combined Fluconazole and Terbinafine Resistance,” Mycoses 63 (2020): 1175–1180, https://doi.org/10.1111/myc.13150.
S. Dellière, B. Joannard, M. Benderdouche, et al., “Emergence of Diffi Cult-To-Treat Tinea Corporis Caused by Trichophyton Mentagrophytes Complex Isolates, Paris, France,” Emerging Infectious Diseases 28, no. 1 (2022): 224–228, https://doi.org/10.3201/eid2801.210810.
A. Singh, P. Singh, G. Dingemans, J. F. Meis, and A. Chowdhary, “Evaluation of DermaGenius® Resistance Real-Time Polymerase Chain Reaction for Rapid Detection of Terbinafine-Resistant Trichophyton Species,” Mycoses 64, no. 7 (2021): 721–726, https://doi.org/10.1111/myc.13271.