[en] Iminophosphoranes with the general formula (R3P═NR′) have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported. The azide-phosphine Staudinger polycondensation is used, and the reaction conditions are carefully studied, including consideration of light and air, the influence of solvent and temperature, and investigation of the electronic and steric effects of multiazides. The newly defined reaction conditions appear to be highly versatile, allowing the use of both electron-rich and electron-deficient arylazides for reaction with phosphines to synthesize a library of poly(arylene iminophosphorane) networks that exhibit exceptional thermal and oxidative stability. Interestingly, despite the ylidic-form of the iminophosphorane linkage as shown by theoretical calculations, these newly developed poly(arylene-iminophosphorane) networks exhibit semiconducting properties, such as absorption band edges up to 800 nm and optical band gaps in the range of 1.70 to 2.40 eV. Finally, we demonstrate the broad applicability of these polymers by processing them into glassy films, creating foam-like structures and synthesizing metallo-polymer hybrids.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CERM - Center for Education and Research on Macromolecules - ULiège [BE]
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Kotnik, Tomaž; National Institute of Chemistry - University of Ljubljana - Ljubljana -Slovenia
Debuigne, Antoine ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
De Winter, Julien; University of Mons [UMons] - Organic Synthesis and Mass Spectrometry Laboratory - Belgium
Huš, Matej; National Institute of Chemistry - Association for Technical Culture of Slovenia - Institute for the Protection of Cultural Heritage of Slovenia - Ljubljana -Slovenia
Pintar, Albin; National Institute of Chemistry - Ljubljana -Slovenia
Kovačič, Sebastijan ; National Institute of Chemistry - Ljubljana -Slovenia ; University of Maribor - Faculty of Chemistry and Chemical Engineering - Slovenia
Language :
English
Title :
Unlocking the potential of azide-phosphine Staudinger reaction for the synthesis of poly(arylene iminophosphorane)s and materials therefrom
This work was supported by the Ministry of Education, Science and Sport of the Republic of Slovenia and the Slovenian Research Agency (Grants P2- 0150, P2-0152, N2-0340, N1-0303, J2-4424, and I0-0039). T.K. and S.K. would like to thank the World Federation of Scientists for their financial support. The authors would like to thank Uroš Javornik (National Institute of Chemistry) for his kind assistance with NMR spectroscopy. A.D. is a Senior Research Associate and would like to thank the National Fund for Scientific Research (F.R.S.–FNRS) for funding and Dr. R. Riva for skillful assistance.
S. Xu E.H. Kim A. Wei E.I. Negishi Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials Sci. Technol. Adv. Mater. 15 044201 1:CAS:528:DC%2BC2cXhvFyhsb7M 27877696 5090684
Ö. Usluer et al. Metal residues in semiconducting polymers: impact on the performance of organic electronic devices ACS Macro Lett. 3 1134 1138 1:CAS:528:DC%2BC2cXhslKktLnL 35610811
F.C. Krebs R.B. Nyberg M. Jørgensen Influence of residual catalyst on the properties of conjugated polyphenylenevinylene materials: palladium nanoparticles and poor electrical performance Chem. Mater. 16 1313 1318 1:CAS:528:DC%2BD2cXhslamsLk%3D
E. Sari G. Yilmaz S. Koyuncu Y. Yagci Photoinduced step-growth polymerization of N-ethylcarbazole J. Am. Chem. Soc. 140 12728 12731 1:CAS:528:DC%2BC1cXhvVSis7nN 30257091
E.F. Woods et al. Light directs monomer coordination in catalyst-free Grignard photopolymerization J. Am. Chem. Soc. 143 18755 18765 1:CAS:528:DC%2BB3MXitlWitbnE 34699721
L.V. Kayser et al. Metal-free, multicomponent synthesis of pyrrole-based π-conjugated polymers from imines, acid chlorides, and alkynes J. Am. Chem. Soc. 138 10516 10521 1:CAS:528:DC%2BC28Xht1GmtrbN 27471822
L. Giraud et al. Upgrading the chemistry of π-conjugated polymers toward more sustainable materials J. Mater. Chem. C 8 9792 9810 1:CAS:528:DC%2BB3cXhtFOqtrvF
M. Valle M. Ximenis X. Lopez de Pariza J.M.W. Chan H. Sardon Spotting trends in organocatalyzed and other organomediated (de)polymerizations and polymer functionalizations Angew. Chem. Int. Ed. 61 e2022030
Q. Wang et al. Effect of end groups on optoelectronic properties of poly(9,9- dioctylfluorene): a study with hexadecylfluorenes as model polymers J. Phys. Chem. C 116 21727 21733 1:CAS:528:DC%2BC38XhtlOjtLrP
J. Kuwabara T. Yasuda N. Takase T. Kanbara Effects of the terminal structure, purity, and molecular weight of an amorphous conjugated polymer on its photovoltaic characteristics ACS Appl. Mater. Interfaces 8 1752 1758 1:CAS:528:DC%2BC28XlvFKhsQ%3D%3D 26716726
J. Miyake Y. Chujo The aza-Wittig polymerization: an efficient method for the construction of carbon–nitrogen double bonds-containing polymers Macromolecules 41 5671 5673 1:CAS:528:DC%2BD1cXosFKmu7k%3D
A. Uva A. Lin H. Tran Biobased, degradable, and conjugated poly(azomethine)s J. Am. Chem. Soc. 145 3606 3614 1:CAS:528:DC%2BB3sXis1Wiu7s%3D 36748883
J. Miyake Y. Chujo Aza-wittig polymerization: a simple method for the synthesis of regioregular poly(azomethine)s Macromolecules 41 9677 9682 1:CAS:528:DC%2BD1cXhtl2nsrfE
B.C. Thompson Y.G. Kim T.D. McCarley J.R. Reynolds Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications J. Am. Chem. Soc. 128 12714 12725 1:CAS:528:DC%2BD28Xptleksrg%3D 17002365
C. Cao et al. Cyanovinylene-based copolymers synthesized by tin-free Knoevenagel polycondensation for high efficiency polymer solar cells J. Mater. Chem. C 6 8020 8027 1:CAS:528:DC%2BC1cXht1KmsrzI
A. Onwubiko et al. Fused electron deficient semiconducting polymers for air stable electron transport Nat. Commun. 9 29379022 5789062 416
Y. Lu et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics Angew. Chem. Int. Ed. 58 11390 11394 1:CAS:528:DC%2BC1MXhtlaqu7vL
S. Jeon S. Park J. Nam Y. Kang J.M. Kim Creating patterned conjugated polymer images using water-compatible reactive inkjet printing ACS Appl. Mater. Interfaces 8 1813 1818 1:CAS:528:DC%2BC28Xis1GitA%3D%3D 26731170
S. Ciftci et al. Horner–Wadsworth–Emmons dispersion polymerization for the production of monodisperse conjugated polymer particles under ambient conditions Polym. Chem. 9 2428 2433 1:CAS:528:DC%2BC1cXns1Ohsr4%3D
D.L. Pastoetter et al. Synthesis of vinylene-linked two-dimensional conjugated polymers via the Horner–Wadsworth–Emmons reaction Angew. Chem. Int. Ed. 59 23620 23625 1:CAS:528:DC%2BB3cXitFCksL3M
R.C. Smith J.D. Protasiewicz Conjugated polymers featuring heavier main group element multiple bonds: a diphosphene-PPV J. Am. Chem. Soc. 126 2268 2269 1:CAS:528:DC%2BD2cXosl2htg%3D%3D 14982406
R.C. Smith X. Chen J.D. Protasiewicz A fluorescent (E)-poly(p-phenylenephosphaalkene) prepared by a phospha-Wittig reaction Inorg. Chem. 42 5468 5470 1:CAS:528:DC%2BD3sXmtVSmu7s%3D 12950188
V.A. Wright B.O. Patrick C. Schneider D.P. Gates Phosphorus copies of PPV: π-conjugated polymers and molecules composed of alternating phenylene and phosphaalkene moieties J. Am. Chem. Soc. 128 8836 8844 1:CAS:528:DC%2BD28XmtVSjtL4%3D 16819877
H. Staudinger J. Meyer Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine Helv. Chim. Acta 2 635 646
S. Rothemund I. Teasdale Preparation of polyphosphazenes: a tutorial review Chem. Soc. Rev. 45 5200 5215 1:CAS:528:DC%2BC28XhtVSgsL7M 27314867 5048340
H.R. Allcock N.L. Morozowich Bioerodible polyphosphazenes and their medical potential Polym. Chem. 3 578 590 1:CAS:528:DC%2BC38XhvFaksro%3D
M. Escobar Z. Jin B.L. Lucht Electron-donating properties of p-phenylene phosphine imides: an electrochemical and spectroscopic investigation Org. Lett. 4 2213 2216 1:CAS:528:DC%2BD38XjvVait7g%3D 12074670
Allcock, H. R. Chemistry and Applications of Polyphosphazenes (Wiley-Interscience, 2003).
K. Matyjaszewski R. Montacue J. Dauth O. Nuyken Synthesis of poly (phenyltrifluoroethoxyphosphazene) by direct reaction of trimethylsilyl azide with bis (2,2,2-trifluoroethyl) phenylphosphonite J. Polym. Sci. Part A: Polym. Chem. 30 813 818 1:CAS:528:DyaK38XkslSntr8%3D
M. Sundhoro J. Park B. Wu M. Yan Synthesis of polyphosphazenes by a fast perfluoroaryl azide-mediated Staudinger reaction Macromolecules 51 4532 4540 1:CAS:528:DC%2BC1cXhtVyjt77M
M. Pomerantz M.W. Victor Synthesis and characterization of a series of alternating copolymers (oligomers) containing organo-X5-phosphazene backbone moieties Macromolecules 22 9
Y. Xie et al. Tetrafluorination of aromatic azide yields a highly efficient Staudinger reaction: kinetics and biolabeling Asian J. Chem. 13 1791 1796 1:CAS:528:DC%2BC1cXhtF2jsrfI
H.C. Brown T.A. Albright W.J. Freeman E.E. Schweizer Nuclear magnetic resonance studies. IV.1 The carbon and phosphorus nuclear magnetic resonance of phosphine oxides and related compounds J. Org. Chem. 40 3437 3441
E.W. Abel S.A. Mucklejohn The chemistry of phosphinimines Phosphorus Sulfur Relat. Elem. 9 235 266 1:CAS:528:DyaL3MXksVeiu7c%3D
S.D. Hanton Mass spectrometry of polymers and polymer surfaces Chem. Rev. 101 527 569 1:CAS:528:DC%2BD3MXmsVertQ%3D%3D 11712256
S. Yasui M. Tsujimoto Investigation of non-Rehm–Weller kinetics in the electron transfer from trivalent phosphorus compounds to singlet excited sensitizers J. Phys. Org. Chem. 26 1090 1097 1:CAS:528:DC%2BC3sXhtFCktrvP
S. Yasui S. Tojo T. Majima Effects of substituents on aryl groups during the reaction of triarylphosphine radical cation and oxygen Org. Biomol. Chem. 4 2969 2973 1:CAS:528:DC%2BD28XntFyrsrY%3D 16855746
S.M. Bonesi S. Protti A. Albini Reactive oxygen species (ROS)-vs. peroxyl-mediated photosensitized oxidation of triphenylphosphine: a comparative study J. Org. Chem. 81 11678 11685 1:CAS:528:DC%2BC28XhslGhu7zI 27792342
S. Xie M. Sundhoro K.N. Houk M. Yan Electrophilic azides for materials synthesis and chemical biology Acc. Chem. Res. 53 937 948 1:CAS:528:DC%2BB3cXlsFais7g%3D 32207916
D.L. Herring The reactions of 1,4-bis (diphenylphosphino)benzene with phenyl azide and 1,4-diazidobenzene J. Org. Chem. 26 3998 3999 1:CAS:528:DyaF38Xks1WjtQ%3D%3D
J.E. Leffler R.D. Temple Staudinger reaction between triarylphosphines and azides mechanism J. Am. Chem. Soc. 89 5235 5246 1:CAS:528:DyaF1cXjvVOjsA%3D%3D
W.Q. Tian Y.A. Wang Mechanisms of Staudinger reactions within density functional theory J. Org. Chem. 69 4299 4308 1:CAS:528:DC%2BD2cXksVKhs7o%3D 15202883
M. Frik et al. In vitro and in vivo evaluation of water-soluble iminophosphorane ruthenium(II) compounds. A potential chemotherapeutic agent for triple negative breast cancer J. Med. Chem. 57 9995 10012 1:CAS:528:DC%2BC2cXhvFKqur3M 25409416 4266334
P. Imhoff S.C.A. Nefkens C.J. Elsevier K. Goubitz C.H. Stam Stabilization of Rhodium(I)-and Iridium(I)-alkyl bonds by intramolecular coordination of an iminophosphorane. X-ray crystal structure of [Rh(CH2PPh2=N–C6H4–CH3-4) (COD)] Organometallics 10 1421 1431 1:CAS:528:DyaK3MXit12is70%3D
Y.L. Liu Y.L. Liu R.J. Jeng Y.S. Chiu Triphenylphosphine oxide-based bismaleimide and poly(bismaleimide): synthesis, characterization, and properties J. Polym. Sci. Part A: Polym. Chem. 39 1716 1725 1:CAS:528:DC%2BD3MXjtV2qu7c%3D
L.C. Thomas R.A. Chittenden Characteristic infra-red absorption frequencies of organophosphorus compounds—V: phosphorus—carbon bonds Spectrochim. Acta 21 1905 1914 1:CAS:528:DyaF28XhtVOj
C.N. Rao T.R. Kasturi Contribution to the infrared spectra of organosulphur compounds Can. J. Chem. 42 36 42 1:CAS:528:DyaF2cXitVGnug%3D%3D
W.K. Winter B. Curnutte S.E. Whitcombs The infrared spectrum and structure of crystalline ferrocene Spctrochim. Acta 15 1085 1102 1:CAS:528:DyaF3cXlsVSgtw%3D%3D
T. Kotnik G. Žerjav A. Pintar E. Žagar S. Kovačič Highly porous poly(arylene cyano-vinylene) beads derived through the Knoevenagel condensation of the oil-in-oil-in-oil double emulsion templates ACS Macro Lett. 10 1248 1253 1:CAS:528:DC%2BB3MXitFCnsrrE 35549042
T. Kotnik G. Žerjav A. Pintar E. Žagar S. Kovačič Azine- and imine-linked conjugated polyHIPEs through Schiff-base condensation reaction Polym. Chem. 13 474 478 1:CAS:528:DC%2BB3MXislyitb%2FF
R.L. Martin Natural transition orbitals J. Chem. Phys. 118 4775 4777 1:CAS:528:DC%2BD3sXhs1ens7s%3D
S.E. Root M.A. Alkhadra D. Rodriquez A.D. Printz D.J. Lipomi Measuring the glass transition temperature of conjugated polymer films with ultraviolet–visible spectroscopy Chem. Mater. 29 2646 2654 1:CAS:528:DC%2BC2sXktlSjtLw%3D
S. Holliday J.E. Donaghey I. McCulloch Advances in charge carrier mobilities of semiconducting polymers used in organic transistors Chem. Mater. 26 647 663 1:CAS:528:DC%2BC3sXht12hur7N
B.J. Schwartz Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions Annu. Rev. Phys. Chem. 54 141 172 1:CAS:528:DC%2BD3sXntFSgs7g%3D 12524429
D.G. Gilheany No d orbitals but Walsh diagrams and maybe banana bonds: chemical bonding in phosphines, phosphine oxides, and phosphonium ylides Chem. Rev. 94 1339 1374
A.B. Chaplin J.A. Harrison P.J. Dyson Revisiting the electronic structure of phosphazenes Inorg. Chem. 44 8407 8417 1:CAS:528:DC%2BD2MXhtV2nurfI 16270979
V.V. Guidi Z. Jin D. Busse W.B. Euler B.L. Lucht Bis(phosphine imide)s: easily tunable organic electron donors J. Org. Chem. 70 7737 7743 1:CAS:528:DC%2BD2MXpt1Wisbk%3D 16149807
F. Monie T. Vidil B. Grignard H. Cramail C. Detrembleur Self-foaming polymers: opportunities for the next generation of personal protective equipment Mater. Sci. Eng. R 145 100628
J.M. Andjaba et al. Catalytic synthesis of conjugated azopolymers from aromatic diazides Am. Chem. Soc. 143 3975 3982 1:CAS:528:DC%2BB3MXlsFWgsLs%3D
I.G. Powers J.M. Andjaba X. Luo J. Mei C.J. Uyeda Catalytic azoarene synthesis from aryl azides enabled by a dinuclear Ni complex Am. Chem. Soc. 140 4110 4118 1:CAS:528:DC%2BC1cXjsF2hu74%3D
S. Bräse C. Gil K. Knepper V. Zimmermann Organic azides: an exploding diversity of a unique class of compounds Angew. Chem. Int. Ed. 44 5188 5240
X.Q. Guo L.P. Zhou L.X. Cai Q.F. Sun Self‐assembled bright luminescent lanthanide‐organic polyhedra for ratiometric temperature sensing Chem. Eur. J. 24 6936 6940 1:CAS:528:DC%2BC1cXotVaqsLk%3D 29572991
A. Jordan P. Stoy H.F. Sneddon Chlorinated solvents: their advantages, disadvantages, and alternatives in organic and medicinal chemistry Chem. Rev. 121 1582 1622 1:CAS:528:DC%2BB3cXis1Crs7jM 33351588
S. Rothemund I. Teasdale Preparation of polyphosphazenes: a tutorial review Chem. Soc. Rev. 45 5200 5215 1:CAS:528:DC%2BC28XhtVSgsL7M 27314867 5048340