Paper published in a book (Scientific congresses and symposiums)
ALF: an asymmetric Lyot wavefront sensor for the ELT/METIS vortex coronagraph
Orban De Xivry, Gilles; Absil, Olivier; Delacroix, Christian et al.
2024In Jackson, Kathryn J.; Schmidt, Dirk; Vernet, Elise (Eds.) Adaptive Optics Systems IX
Editorial reviewed
 

Files


Full Text
Orban de Xivry et al_2024_ALF.pdf
Author preprint (778.2 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
focal plane wavefront sensing; high-contrast imaging; mid-infrared imaging; observational; coronagraph
Abstract :
[en] Non-common path quasi-static and differential aberrations are one of the big hurdles of direct imaging for current and future high-contrast imaging instruments. They increase speckle and photon noise thus reducing the achievable contrast and lead to a significant hit in HCI performance. The Mid-infrared ELT Imager and Spectrograph (METIS) will provide high-contrast imaging, including vortex coronagraphy in L, M and N bands, with the ultimate goal of directly imaging temperate rocky planets around the nearest stars. Ground-based mid-infrared observations are however also impacted by water vapor inhomogeneities in the atmosphere, which generate additional chromatic turbulence not corrected by the near-infrared adaptive optics. This additional source of wavefront error (WFE) significantly impacts HCI performance, and even dominates the WFE budget in N band. Instantaneous focal plane wavefront sensing is thus required to mitigate its impact. In this context, we propose to implement a novel wavefront sensing approach for the vortex coronagraph using an asymmetric Lyot stop and machine learning. The asymmetric pupil stop allows for the problem to become solvable, lifting the ambiguity on the sign of even Zernike modes. Choosing the Lyot plane instead of the entrance pupil for this mask is also not arbitrary: it preserves the rejection efficiency of the coronagraph and minimizes the impact of the asymmetry on the throughput. Last but not least, machine learning allows us to solve this inversion problem which is non-linear and lacks an analytical solution. In this contribution, we present our concept, our simulation framework, our results and a first laboratory demonstration of the technique.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Orban De Xivry, Gilles  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Absil, Olivier  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Delacroix, Christian  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Pathak, Prashant ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory ; Indian Institutes of Technology, Kanpur, India
Quesnel, Maxime ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Bertram, Thomas;  Max-Planck-Institut für Astronomie, Heidelberg, Germany
Language :
English
Title :
ALF: an asymmetric Lyot wavefront sensor for the ELT/METIS vortex coronagraph
Publication date :
2024
Event name :
SPIE Astronomical Telescopes + Instrumentation 2024
Event place :
Yokohama, Japan
Event date :
16-06-2024 => 22-06-2024
Audience :
International
Main work title :
Adaptive Optics Systems IX
Editor :
Jackson, Kathryn J.
Schmidt, Dirk
Vernet, Elise
Publisher :
SPIE, Bellingham, United States
ISBN/EAN :
978-1-5106-7517-9
Peer reviewed :
Editorial reviewed
European Projects :
H2020 - 819155 - EPIC - Earth-like Planet Imaging with Cognitive computing
Funders :
ERC - European Research Council
F.R.S.-FNRS - Fonds de la Recherche Scientifique
EU - European Union
Funding number :
819155
Available on ORBi :
since 17 January 2025

Statistics


Number of views
1 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi