[en] Non-common path quasi-static and differential aberrations are one of the big hurdles of direct imaging for current and future high-contrast imaging instruments. They increase speckle and photon noise thus reducing the achievable contrast and lead to a significant hit in HCI performance. The Mid-infrared ELT Imager and Spectrograph (METIS) will provide high-contrast imaging, including vortex coronagraphy in L, M and N bands, with the ultimate goal of directly imaging temperate rocky planets around the nearest stars. Ground-based mid-infrared observations are however also impacted by water vapor inhomogeneities in the atmosphere, which generate additional chromatic turbulence not corrected by the near-infrared adaptive optics. This additional source of wavefront error (WFE) significantly impacts HCI performance, and even dominates the WFE budget in N band. Instantaneous focal plane wavefront sensing is thus required to mitigate its impact. In this context, we propose to implement a novel wavefront sensing approach for the vortex coronagraph using an asymmetric Lyot stop and machine learning. The asymmetric pupil stop allows for the problem to become solvable, lifting the ambiguity on the sign of even Zernike modes. Choosing the Lyot plane instead of the entrance pupil for this mask is also not arbitrary: it preserves the rejection efficiency of the coronagraph and minimizes the impact of the asymmetry on the throughput. Last but not least, machine learning allows us to solve this inversion problem which is non-linear and lacks an analytical solution. In this contribution, we present our concept, our simulation framework, our results and a first laboratory demonstration of the technique.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Orban De Xivry, Gilles ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Delacroix, Christian ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Pathak, Prashant ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory ; Indian Institutes of Technology, Kanpur, India
Quesnel, Maxime ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Bertram, Thomas; Max-Planck-Institut für Astronomie, Heidelberg, Germany
Language :
English
Title :
ALF: an asymmetric Lyot wavefront sensor for the ELT/METIS vortex coronagraph
Brandl, B., Absil, O., Feldt, M., Garcia, P., Glasse, A., Guedel, M., Labadie, L., Meyer, M., Pantin, E., Quanz, S., Wang, S.-Y., van Winckel, H., Bettonvil, F., Glauser, A. M., van Boekel, R., Salo, C., Scheithauer, S., Stuik, R., Haupt, C., and Siebenmorgen, R., “Final design and status of the Mid-Infrared ELT Imager and Spectrograph, METIS,” Proc. SPIE, 13096–38 (2024).
Bertram, T., Absil, O., Bizenberger, P., Brandl, B., Brandner, W., Briegel, F., Cardenas Vazquez, M. C., Coppejans, H., Correia, C., Feldt, M., Glauser, A. M., Häberle, M., Huber, A., Kulas, M., Laun, W., Mohr, L., Mortimer, D., Naranjo, V., Obereder, A., Orban de Xivry, G., Rohloff, R.-R., Scheithauer, S., Steuer, H., and van Boekel, R., “How to make METIS SCAO work,” SPIE (2024).
Absil, O., Kenworthy Matthew, Delacroix, C., Orban de Xivry, G., König, L., Pathak, P., Doelman, D., Por, E., Snik, F., van der Born, J., Cantalloube, F., Carlotti, A., Dolkens, D., Glauser, A. M., van Boekel, R., Bertram, T., Feldt, M., Pantin, E., Quanz, S. P., Bettonvil, F., and Brandl, B., “METIS high-contrast imaging: from final design to manufacturing and testing,” Proc. SPIE (2024).
Carlomagno, B., Delacroix, C., Absil, O., Cantalloube, F., de Xivry, G. O., Pathak, P., Agocs, T., Bertram, T., Brandl, B., Burtscher, L., Doelman, D., Feldt, M., Glauser, A., Hippler, S., Kenworthy, M., Por, E., Snik, F., Stuik, R., and van Boekel, R., “METIS high-contrast imaging: design and expected performance (Erratum),” Journal of Astronomical Telescopes, Instruments, and Systems 6, 049801 (Oct. 2020).
Delacroix, C., Absil, O., Orban de Xivry, G., Shinde, M., Pathak, P., Cantalloube, F., Carlomagno, B., Christiaens, V., Boné, A., Dolkens, D., Kenworthy, M., and Doelman, D., “The High-contrast End-to-End Performance Simulator (HEEPS): influence of ELT/METIS instrumental effects,” in [Modeling, Systems Engineering, and Project Management for Astronomy X], Angeli, G. Z. and Dierickx, P., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 12187, 121870F (Aug. 2022).
Absil, O., Delacroix, C., Orban de Xivry, G., Pathak, P., Willson, M., Berio, P., van Boekel, R., Matter, A., Defrère, D., Burtscher, L., Woillez, J., and Brandl, B., “Impact of water vapor seeing on mid-infrared high-contrast imaging at ELT scale,” in [Adaptive Optics Systems VIII], Schreiber, L., Schmidt, D., and Vernet, E., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 12185, 1218511 (Aug. 2022).
Laugier, R., Martinache, F., N’Diaye, M., and Cvetojevic, N., “Reconciling kernel-phase and coronagraphy: new steps towards combining the performance of opposing techniques,” in [Optical and Infrared Interferometry and Imaging VII], Tuthill, P. G., Mérand, A., and Sallum, S., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 11446, 114461Q (Dec. 2020).
Por, E. H., Haffert, S. Y., Radhakrishnan, V. M., Doelman, D. S., van Kooten, M., and Bos, S. P., “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in [Adaptive Optics Systems VI], Close, L. M., Schreiber, L., and Schmidt, D., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10703, 1070342 (July 2018).
Codona, J. L. and Kenworthy, M., “Focal Plane Wavefront Sensing Using Residual Adaptive Optics Speckles,” ApJ 767, 100 (Apr. 2013).
Gratadour, D., Ferreira, F., Sevin, A., Doucet, N., Clénet, Y., Gendron, E., Lainé, M., Vidal, F., Brulé, J., Puech, M., Vérinaud, C., and Carlotti, A., “COMPASS: status update and long term development plan,” in [Adaptive Optics Systems V], Marchetti, E., Close, L. M., and Véran, J.-P., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 9909, 990971 (July 2016).
Boné, A., Absil, O., and Delacroix, C. (in prep).
Noll, R. J., “Zernike polynomials and atmospheric turbulence.,” Journal of the Optical Society of America (1917-1983) 66, 207–211 (Mar. 1976).
Conan, J. M., Rousset, G., and Madec, P. Y., “Wave-front temporal spectra in high-resolution imaging through turbulence.,” Journal of the Optical Society of America A 12, 1559–1570 (July 1995).
He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition,” arXiv e-prints , arXiv:1512.03385 (Dec. 2015).
Jolivet, A., Orban de Xivry, G., Huby, E., Piron, P., Catalan, E. V., Habraken, S., Surdej, J., Karlsson, M., and Absil, O., “L- and M-band annular groove phase mask in lab performance assessment on the vortex optical demonstrator for coronagraphic applications,” Journal of Astronomical Telescopes, Instruments, and Systems 5, 025001 (Apr. 2019).