Nile Delta; Relative sea level; Satellite altimetry; Sea level change; Vertical land motion; Geophysics; Earth-Surface Processes
Abstract :
[en] We have investigated the sea level rise (SLR) in the Southern Levantine region of the Mediterranean Sea during the period 1993–2015 using satellite altimetry and tide gauge data. Satellite altimetry indicated a positive SLR with a mean of 3.51 ± 0.62 mm/year, which is slightly higher than the global averaged mean SLR that was reported about 3.19 ± 0.63 (Chambers et al., 2017). The rates of vertical land motion (VLM rate) have been estimated from the trend of de-seasoned sea level difference (altimetry minus TG) time series at the 6 selected TG sites. Land subsidence was found to occur at three stations along the Nile Delta coast (Rosetta, Burullus and Damietta) and at one station in Israel (Hadera). Most of the previous studies in the Mediterranean Sea indicated that there are no sufficient tide gauge data in the Southern and Eastern Mediterranean Sea. So, this investigation offers valuable sea level information that can be applied in a wide range of climatology, related environmental issues, for example; land subsidence, inundation, and global warming in the southern Levantine basin.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Mohamed, Bayoumy Abdelaziz ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; University of Alexandria, Faculty of Science, Department of Oceanography, Alexandria, Egypt
Mohamed, Abdallah; University of Alexandria, Faculty of Science, Department of Oceanography, Alexandria, Egypt
Alam El-Din, Khaled; University of Alexandria, Faculty of Science, Department of Oceanography, Alexandria, Egypt
Nagy, Hazem; University of Alexandria, Faculty of Science, Department of Oceanography, Alexandria, Egypt
Elsherbiny, Ahmed; Coastal Research Institute, Alexandria, Egypt
Language :
English
Title :
Sea level changes and vertical land motion from altimetry and tide gauges in the Southern Levantine Basin
Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., Larnicol, G., Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clim. Dyn. 47:9-10 (2016), 2851–2866.
Carrère, L., Lyard, F., Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing‐comparisons with observations. Geophys. Res. Lett., 30(6), 2003.
Chambers, D.P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., et al. Evaluation of the global mean sea level budget between 1993 and 2014. Surv. Geophys. 38:1 (2017), 309–327.
Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., Yan, J., The impact of sea level rise on developing countries: a comparative analysis. Clim. Change 93:3 (2009), 379–388.
El-Din, K.A., Abdelrahman, S.M., El Meligy, M., Seasonal and long term variations of sea level and meteorological conditions along the Egyptian coasts., MEDCOAST Proceedings of the Eighth International Conference on the Mediterranean Coastal Environment, Vol. 7, 2007, 1295–1307.
Ericson, J.P., Vörösmarty, C.J., Dingman, S.L., Ward, L.G., Meybeck, M., Effective sea-level rise and deltas: causes of change and human dimension implications. Glob. Planet. Change 50:1 (2006), 63–82.
Fenoglio-Marc, L., Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Phys. Chem. Earth Parts A/b/c 27:32-34 (2002), 1419–1431.
Fenoglio-Marc, L., Dietz, C., Groten, E., Vertical land motion in the Mediterranean Sea from altimetry and tide gauge stations. Mar. Geod. 27:3-4 (2004), 683–701.
Fenoglio-Marc, L., Schöne, T., Illigner, J., Becker, M., Manurung, P., Khafid, Sea level change and vertical motion from satellite altimetry, tide gauges and GPS in the indonesian region. Mar. Geod. 35:SUPPL. 1 (2012), 137–150, 10.1080/01490419.2012.718682.
García, D., Vigo, I., Chao, B.F., Martínez, M.C., Vertical crustal motion along the mediterranean and black sea coast derived from ocean altimetry and tide gauge data. Pure Appl. Geophys. 164:4 (2007), 851–863, 10.1007/s00024-007-0193-8.
García, F., Vigo, M.I., García-García, D., Sánchez-Reales, J.M., Combination of multisatellite altimetry and tide gauge data for determining vertical crustal movements along Northern Mediterranean Coast. Pure Appl. Geophys. 169:8 (2011), 1411–1423.
Haddad, M., Hassani, H., Taibi, H., Sea level in the Mediterranean Sea: seasonal adjustment and trend extraction within the framework of SSA. Earth Sci. Inform. 6:2 (2013), 99–111, 10.1007/s12145-013-0114-6.
Hassaan, M.A., Abdrabo, M.A., Vulnerability of the Nile Delta coastal areas to inundation by sea level rise. Environ. Monit. Assess. 185:8 (2013), 6607–6616.
Landerer, F.W., Volkov, D.L., The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys. Res. Lett. 40:3 (2013), 553–557.
Maiyza, I.A., El-Geziry, T.M., Long term sea-level variation in the south-eastern Mediterranean Sea: a new approach of examination. J. Oper. Oceanogr. 5:2 (2012), 53–59.
Menéndez, M., Woodworth, P.L., Changes in extreme high water levels based on a quasi‐global tide‐gauge data set. J. Geophys. Res. Oceans, 115(C10), 2010.
Nagy, H., Elgindy, A., Pinardi, N., Zavatarelli, M., Oddo, P., A nested pre-operational model for the egyptian shelf zone: model configuration and validation/calibration. Dyn. Atmos. Ocean. 80 (2017), 75–96, 10.1016/j.dynatmoce.2017.10.003.
Nerem, R.S., Mitchum, G.T., Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophys. Res. Lett., 29(19), 2002.
Nicholls, R.J., Cazenave, A., Sea-level rise and its impact on coastal zones (science (1517)). Science, 329(5992), 2010, 628.
Overland, J.E., Preisendorfer, R.W., A significance test for principal components applied to a cyclone climatology. Mon. Weather. Rev. 110:1 (1982), 1–4.
Preisendorfer, R.W., Principal Component Analysis in Meteorology and Oceanography, no. 17 in Developments in Atmospheric Science. 1988, Elsevier, Amsterdam.
Raey, M., Michel, D., Pandya, A., (eds.) Coastal Zones and Climate Change, 2010, Stimson Center, 31–50 Rep. Retrieved from http://www.jstor.org/stable/resrep10902.9.
Rio, M.H., Pascual, A., Poulain, P.M., Menna, M., Barceló, B., Tintoré, J., Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean. Sci., 10(4), 2014, 73.
Shaltout, M., Tonbol, K., Omstedt, A., Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 57:4 (2015), 293–307.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., et al. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change., 2007, Cambridge University Press, Cambridge, 996.
Stanley, J.-, Clemente, P.L., Increased land subsidence and sea-level rise are submerging egypt's nile delta coastal margin. GSA Today 27:5 (2017), 4–11, 10.1130/GSATG312A.1.
Stanley, J.D., Toscano, M.A., Ancient archaeological sites buried and submerged along Egypt's Nile delta coast: gauges of Holocene delta margin subsidence. J. Coast. Res., 2009, 158–170.
Tsimplis, M.N., Calafat, F.M., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., et al. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 118:2 (2013), 944–952, 10.1002/jgrc.20078.
Welch, P., The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. Ieee Trans. Audio Electroacoust. 15:2 (1967), 70–73.
Wilks, D.S., Statistical Methods in the Atmospheric Sciences, Vol. 100, 2011, International Geophysics Series https://doi.org/0127519661.
Wöppelmann, G., Marcos, M., Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J. Geophys. Res. Oceans, 117(C1), 2012.
Wöppelmann, G., Le Cozannet, G., Michele, M., Raucoules, D., Cazenave, A., Garcin, M., et al. Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt?. Geophys. Res. Lett. 40:12 (2013), 2953–2957.