Article (Scientific journals)
Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea
Barth, Alexander; Brajard, Julien; Alvera Azcarate, Aida et al.
2024In Ocean Science, 20 (6), p. 1567 - 1584
Peer Reviewed verified by ORBi
 

Files


Full Text
os-20-1567-2024.pdf
Author postprint (8.1 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Oceanography; Paleontology
Abstract :
[en] Satellite observations provide a global or near-global coverage of the World Ocean. They are however affected by clouds (among others), which severely reduce their spatial coverage. Different methods have been proposed in the literature to reconstruct missing data in satellite observations. For many applications of satellite observations, it has been increasingly important to accurately reflect the underlying uncertainty of the reconstructed observations. In this paper, we investigate the use of a denoising diffusion model to reconstruct missing observations. Such methods can naturally provide an ensemble of reconstructions where each member is spatially coherent with the scales of variability and with the available data. Rather than providing a single reconstruction, an ensemble of possible reconstructions can be computed, and the ensemble spread reflects the underlying uncertainty. We show how this method can be trained from a collection of satellite data without requiring a prior interpolation of missing data and without resorting to data from a numerical model. The reconstruction method is tested with chlorophyll a concentration from the Ocean and Land Colour Instrument (OLCI) sensor (aboard the satellites Sentinel-3A and Sentinel-3B) on a small area of the Black Sea and compared with the neural network DINCAE (Data-INterpolating Convolutional Auto-Encoder). The spatial scales of the reconstructed data are assessed via a variogram, and the accuracy and statistical validity of the reconstructed ensemble are quantified using the continuous ranked probability score and its decomposition into reliability, resolution, and uncertainty.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Barth, Alexander  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Brajard, Julien ;  Nansen Environmental and Remote Sensing Center, Bjerknes Centre for Climate Research, Bergen, Norway
Alvera Azcarate, Aida  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Mohamed, Bayoumy Abdelaziz  ;  Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Troupin, Charles  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Beckers, Jean-Marie  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Language :
English
Title :
Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea
Publication date :
02 December 2024
Journal title :
Ocean Science
ISSN :
1812-0784
eISSN :
1812-0792
Publisher :
Copernicus
Volume :
20
Issue :
6
Pages :
1567 - 1584
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercalculateur
European Projects :
HE - 101081273 - NECCTON - New Copernicus capability for trophic ocean networks
Name of the research project :
NECCTON
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
EU - European Union
Région wallonne
Funding number :
101081273; 1910247; 40005210
Funding text :
The present research benefited from computational resources made available on Lucia, the tier-1 supercomputer of the Walloon Region. This work has received funding from the Horizon Europe RIA program via the NECCTON project. Aida Alvera-Azcirate received funding from the Copernicus Marine Service MultiRes project. The authors wish also to thank the Julia community, in particular for the Julia programming language and the packages Flux.jl and CUDA.jl. This research has been supported by the Fonds De La Recherche Scientifique - FNRS (grant no. 40005210), the Horizon Europe framework program, Horizon Europe Innovative Europe (grant no. 101081273), and the Walloon Region (grant no. 1910247).This research has been supported by the Fonds De La Recherche Scientifique \u2013 FNRS (grant no. 40005210), the Horizon Europe framework program, Horizon Europe Innovative Europe (grant no. 101081273), and the Walloon Region (grant no. 1910247).
Available on ORBi :
since 13 January 2025

Statistics


Number of views
98 (17 by ULiège)
Number of downloads
69 (13 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
4
OpenCitations
 
0
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi