[en] The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR coexpression on MR genome-wide transcriptional responses and chromatin binding upon activation by aldosterone and glucocorticoids, both physiological ligands of this receptor. Transcriptional responses of MR in the absence of GR result in fewer regulated genes. In contrast, coexpression of GR potentiates MR-mediated transcription, particularly in response to aldosterone, both in cell lines and in the more physiologically relevant model of mouse colon organoids. MR chromatin binding is altered by GR coexpression in a locus- and ligand-specific way. Single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that coexpression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Johnson, Thomas A ; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892
Fettweis, Grégory ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et biologie moléculaires animales ; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892
Wagh, Kaustubh ; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892 ; Department of Physics, University of Maryland, College Park, MD 20742
Ceacero-Heras, Diego ; Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada 18071, Spain
Krishnamurthy, Manan; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892
Sánchez de Medina, Fermín; Department of Pharmacology, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada 18071, Spain
Martínez-Augustin, Olga; Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada 18071, Spain
Upadhyaya, Arpita; Department of Physics, University of Maryland, College Park, MD 20742 ; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
Hager, Gordon L; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892
Alvarez de la Rosa, Diego ; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892 ; Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna 38200, Spain
Language :
English
Title :
The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor.
Publication date :
19 November 2024
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
NCI - National Cancer Institute NIGMS - National Institute of General Medical Sciences NSF - National Science Foundation MICINN - Ministerio de Ciencia e Innovacion ISCIII - Instituto de Salud Carlos III
Funding text :
We thank the National Cancer Institute Advanced Technology Program Sequencing Facility for sequencing services.This research used the NIH high-performance computing systems (Biowulf) for genomics analyses.The researchers also thank Tatiana Karpova and David Ball of the Optical Microscopy Core at the NCI, NIH for assistance with the SMT experiments, and Diego M. Presman for his comments on the manuscript. Research was supported by grants from the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, by grants PID2019-105339RB-I00, PID2020-112768RB-I00, and PID2022-138788NB-I00_22091 (funded by MCIN/AEI/10.13039/501100011033 and \u201CERDF A way of making Europe,\u201D MICINN, Spain) and by grant PI21/00952 from Instituto de Salud Carlos III (ISCIII, Spain), cofunded by the European Union. Centro de Investigaci\u00F3n Biom\u00E9dica en Red de Enfermedades Hep\u00E1ticas y Digestivas (CIBERehd) is funded by ISCIII, Spain. D.A.d.l.R. was partially supported by PRX18/00498 (funded by Programa Estatal de Promoci\u00F3n del Talento y su Empleabilidad en I + D + i, Subprograma Estatal de Movilidad, del Plan Estatal de I + D + I, MICINN, Spain). D.C.-H. was supported by a fellowship from the Spanish DCH Ministry of Science, Education and Universities.A.U. was supported by NIH R35-145313 and NSF 2132922.ACKNOWLEDGMENTS.WethanktheNationalCancerInstituteAdvancedTechnology Program Sequencing Facility for sequencing services.This research used the NIH high-performancecomputing systems(Biowulf)forgenomics analyses.Theresearchersalso thank Tatiana Karpova and David Ball of the Optical Microscopy Core at the NCI,NIH for assistance with the SMTexperiments,and Diego M.Presman for his comments on the manuscript.Research was supported by grants from the Intramural Research Program of the NIH,National Cancer Institute,Center for Cancer Research,by grants PID2019-105339RB-I00, PID2020-112768RB-I00, and PID2022-138788NB-I00_22091 (fundedbyMCIN/AEI/10.13039/501100011033and\u201CERDFAwayof makingEurope,\u201D MICINN, Spain) and by grant PI21/00952 from Instituto de Salud Carlos III (ISCIII, Spain), cofunded by the European Union. Centro de Investigaci\u00F3n Biom\u00E9dica en Red de Enfermedades Hep\u00E1ticas y Digestivas (CIBERehd) is funded by ISCIII, Spain. D.A.d.l.R. was partially supported by PRX18/00498 (funded by Programa Estatal de Promoci\u00F3n del Talento y su Empleabilidad en I + D + i, Subprograma Estatal de Movilidad, del Plan Estatal de I + D + I, MICINN, Spain). D.C.-H. was supported by a fellowship from the Spanish DCH Ministry of Science,Education and Universities.A.U. was supported by NIH R35-145313 and NSF 2132922.
R. W. Hunter, J. R. Ivy, M. A. Bailey, Glucocorticoids and renal Na+ transport: Implications for hypertension and salt sensitivity. J. Physiol. 592, 1731–1744 (2014).
F. Fallo et al., Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J. Clin. Endocrinol. Metab. 91, 454–459 (2006).
M. E. Baker, Steroid receptors and vertebrate evolution. Mol. Cell Endocrinol. 496, 110526 (2019).
J. T. Bridgham, S. M. Carroll, J. W. Thornton, Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006).
J. L. Arriza et al., Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237, 268–275 (1987).
K. Chapman, M. Holmes, J. Seckl, 11beta-hydroxysteroid dehydrogenases: Intracellular gatekeepers of tissue glucocorticoid action. Physiol. Rev. 93, 1139–1206 (2013).
C. Hellal-Levy et al., Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors. FEBS Lett. 464, 9–13 (1999).
N. Farman, M. E. Rafestin-Oblin, Multiple aspects of mineralocorticoid selectivity. Am. J. Physiol. Renal. Physiol. 280, F181–F192 (2001).
E. Carceller-Zazo et al., The mineralocorticoid receptor modulates timing and location of genomic binding by glucocorticoid receptor in response to synthetic glucocorticoids in keratinocytes. FASEB J. 37, e22709 (2023).
M. Joels, E. R. de Kloet, Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro. Proc. Natl. Acad. Sci. U.S.A. 87, 4495–4498 (1990).
R. H. Oakley et al., Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci. Signal 12, eaau9685 (2019).
W. H. Hudson, C. Youn, E. A. Ortlund, Crystal structure of the mineralocorticoid receptor DNA binding domain in complex with DNA. PLoS One 9, e107000 (2014).
K. Fischer, S. M. Kelly, K. Watt, N. C. Price, I. J. McEwan, Conformation of the mineralocorticoid receptor N-terminal domain: Evidence for induced and stable structure. Mol. Endocrinol. 24, 1935–1948 (2010).
H. Fuse, H. Kitagawa, S. Kato, Characterization of transactivational property and coactivator mediation of rat mineralocorticoid receptor activation function-1 (AF-1). Mol. Endocrinol. 14, 889–899 (2000).
D. N. Lavery, I. J. McEwan, Structure and function of steroid receptor AF1 transactivation domains: Induction of active conformations. Biochem. J. 391, 449–464 (2005).
L. P. Tallec et al., Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: Implication of small ubiquitin-related modifier 1 modification. Mol. Endocrinol. 17, 2529–2542 (2003).
E. Gomez-Sanchez, C. E. Gomez-Sanchez, The multifaceted mineralocorticoid receptor. Compr. Physiol. 4, 965–994 (2014).
O. C. Meijer et al., Transcriptional glucocorticoid effects in the brain: Finding the relevant target genes. J. Neuroendocrinol. 35, e13213 (2022), 10.1111/jne.13213.
J. Bigas, L. M. Sevilla, E. Carceller, J. Boix, P. Perez, Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis. 9, 588 (2018).
D. Clarisse et al., Crosstalk between glucocorticoid and mineralocorticoid receptors boosts glucocorticoid-induced killing of multiple myeloma cells. Cell Mol. Life Sci. 80, 249 (2023).
G. Fettweis et al., The mineralocorticoid receptor forms higher order oligomers upon DNA binding. Protein Sci. 33, e4890 (2024).
W. Liu, J. Wang, N. K. Sauter, D. Pearce, Steroid receptor heterodimerization demonstrated in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 12480–12484 (1995).
M. Nishi, M. Tanaka, K. Matsuda, M. Sunaguchi, M. Kawata, Visualization of glucocorticoid receptor and mineralocorticoid receptor interactions in living cells with GFP-based fluorescence resonance energy transfer. J. Neurosci. 24, 4918–4927 (2004).
J. R. Pooley et al., Beyond the heterodimer model for mineralocorticoid and glucocorticoid receptor interactions in nuclei and at DNA. PLoS One 15, e0227520 (2020).
C. A. Rivers et al., Glucocorticoid receptor-tethered mineralocorticoid receptors increase glucocorticoid-induced transcriptional responses. Endocrinology 160, 1044–1056 (2019).
T. Trapp, R. Rupprecht, M. Castren, J. M. Reul, F. Holsboer, Heterodimerization between mineralocorticoid and glucocorticoid receptor: A new principle of glucocorticoid action in the CNS. Neuron 13, 1457–1462 (1994).
X. M. Ou, J. M. Storring, N. Kushwaha, P. R. Albert, Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J. Biol. Chem. 276, 14299–14307 (2001).
M. Tsugita et al., Glucocorticoid receptor plays an indispensable role in mineralocorticoid receptor-dependent transcription in GR-deficient BE(2)C and T84 cells in vitro. Mol. Cell Endocrinol. 302, 18–25 (2009).
A. Derfoul, N. M. Robertson, D. J. Hall, G. Litwack, The N-terminal domain of the mineralocorticoid receptor modulates both mineralocorticoid receptor- and glucocorticoid receptor-mediated transactivation from Na/K ATPase beta1 target gene promoter. Endocrine 13, 287–295 (2000).
R. Jimenez-Canino, M. X. Fernandes, D. Alvarez de la Rosa, Phosphorylation of mineralocorticoid receptor ligand binding domain impairs receptor activation and has a dominant negative effect over non-phosphorylated receptors. J. Biol. Chem. 291, 19068–19078 (2016).
H. P. Gaeggeler et al., Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone-stimulated sodium transport in a novel renal cell line. J. Am. Soc. Nephrol. 16, 878–891 (2005).
K. Geering, M. Claire, H. P. Gaeggeler, B. C. Rossier, Receptor occupancy vs. induction of Na+-K+-ATPase and Na+ transport by aldosterone. Am. J. Physiol. 248, C102–C108 (1985).
V. Paakinaho, T. A. Johnson, D. M. Presman, G. L. Hager, Glucocorticoid receptor quaternary structure drives chromatin occupancy and transcriptional outcome. Genome. Res. 29, 1223–1234 (2019).
C. Aguilar-Sanchez et al., Identification of permissive insertion sites for generating functional fluorescent mineralocorticoid receptors. Endocrinology 153, 3517–3525 (2012).
M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014).
T. A. Johnson, V. Paakinaho, S. Kim, G. L. Hager, D. M. Presman, Genome-wide binding potential and regulatory activity of the glucocorticoid receptor’s monomeric and dimeric forms. Nat. Commun. 12, 1987 (2021).
J. L. Arriza, R. B. Simerly, L. W. Swanson, R. M. Evans, The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1, 887–900 (1988).
M. Lombes, S. Kenouch, A. Souque, N. Farman, M. E. Rafestin-Oblin, The mineralocorticoid receptor discriminates aldosterone from glucocorticoids independently of the 11 beta-hydroxysteroid dehydrogenase. Endocrinology 135, 834–840 (1994).
T. C. Voss et al., Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554 (2011).
S. John et al., Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).
S. Heinz et al., Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
T. A. Johnson et al., Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Res. 46, 203–214 (2018).
S. C. Biddie et al., Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43, 145–155 (2011).
J. S. Carroll et al., Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).
K. Ueda et al., Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor. Biochem. Biophys. Res. Commun. 445, 132–137 (2014).
S. Messaoudi et al., Aldosterone-specific activation of cardiomyocyte mineralocorticoid receptor in vivo. Hypertension 61, 361–367 (2013).
T. K. Kim et al., Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).
C. Zhu et al., A non-canonical role of YAP/TEAD is required for activation of estrogen-regulated enhancers in breast cancer. Mol. Cell 75, 791–806.e8 (2019).
F. Greulich et al., Enhancer RNA expression in response to glucocorticoid treatment in murine macrophages. Cells 11, 28 (2021).
J. A. Hoffman et al., Multimodal regulatory elements within a hormone-specific super enhancer control a heterogeneous transcriptional response. Mol. Cell 82, 803–815.e5 (2022).
C. J. Aranda et al., Intestinal epithelial deletion of the glucocorticoid receptor NR3C1 alters expression of inflammatory mediators and barrier function. FASEB J. 33, 14067–14082 (2019).
C. Asher, H. Wald, B. C. Rossier, H. Garty, Aldosterone-induced increase in the abundance of Na+ channel subunits Am. J. Physiol. 271, C605–C611 (1996).
C. Ronzaud et al., Impairment of sodium balance in mice deficient in renal principal cell mineralocorticoid receptor. J. Am. Soc. Nephrol. 18, 1679–1687 (2007).
E. Petrovich, C. Asher, H. Garty, Induction of FKBP51 by aldosterone in intestinal epithelium. J. Steroid Biochem. Mol. Biol. 139, 78–87 (2014).
R. Soundararajan, T. T. Zhang, J. Wang, A. Vandewalle, D. Pearce, A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J. Biol. Chem. 280, 39970–39981 (2005).
J. B. Grimm et al., A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250, 243 p following 250 (2015).
M. Tokunaga, N. Imamoto, K. Sakata-Sogawa, Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).
D. A. Stavreva et al., Transcriptional bursting and co-bursting regulation by steroid hormone release pattern and transcription factor mobility. Mol. Cell 75, 1161–1177.e11 (2019).
V. Paakinaho et al., Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat. Commun. 8, 15896 (2017).
S. S. Ashwin, T. Nozaki, K. Maeshima, M. Sasai, Organization of fast and slow chromatin revealed by single-nucleosome dynamics. Proc. Natl. Acad. Sci. U.S.A. 116, 19939–19944 (2019).
D. A. Garcia et al., An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors. Mol. Cell 81, 1484–1498.e6 (2021).
K. Wagh, D. A. Stavreva, G. L. Hager, Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol. Cell, 10.1016/j.molcel.2024.09.022 (2024).
K. Wagh et al., Dynamic switching of transcriptional regulators between two distinct low-mobility chromatin states. Sci. Adv. 9, eade1122 (2023).
W. H. Richardson, Bayesian-based iterative method of image restoration*. J. Opt. Soc. Am. 62, 55–59 (1972).
L. B. Lucy, An iterative technique for the rectification of observed distributions. Astronom. J. 79, 745 (1974).
J. G. Savory et al., Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Mol. Cell Biol. 21, 781–793 (2001).
L. van Weert et al., Mechanistic insights in NeuroD potentiation of mineralocorticoid receptor signaling. Int. J. Mol. Sci. 20, 1575 (2019).
P. Kiilerich et al., Interaction between the trout mineralocorticoid and glucocorticoid receptors in vitro. J. Mol. Endocrinol. 55, 55–68 (2015).
S. L. Planey, A. Derfoul, A. Steplewski, N. M. Robertson, G. Litwack, Inhibition of glucocorticoid-induced apoptosis in 697 pre-B lymphocytes by the mineralocorticoid receptor N-terminal domain. J. Biol. Chem. 277, 42188–42196 (2002).
K. R. Mifsud, J. M. Reul, Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 113, 11336–11341 (2016).
F. Le Billan et al., Corticosteroid receptors adopt distinct cyclical transcriptional signatures. FASEB J. 32, 5626–5639 (2018).
J. Chen, C. E. Gomez-Sanchez, A. Penman, P. J. May, E. Gomez-Sanchez, Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R328–R340 (2014).
K. E. McCann et al., Novel role for mineralocorticoid receptors in control of a neuronal phenotype. Mol. Psychiatry 26, 350–364 (2021).
R. H. Oakley et al., Combinatorial actions of glucocorticoid and mineralocorticoid stress hormone receptors are required for preventing neurodegeneration of the mouse hippocampus. Neurobiol. Stress 15, 100369 (2021).
D. Ackermann et al., In vivo nuclear translocation of mineralocorticoid and glucocorticoid receptors in rat kidney: Differential effect of corticosteroids along the distal tubule. Am. J. Physiol. Renal. Physiol. 299, F1473–F1485 (2010).
A. Nguyen Dinh Cat et al., Conditional transgenic mice for studying the role of the glucocorticoid receptor in the renal collecting duct. Endocrinology 150, 2202–2210 (2009).
K. De Bosscher, S. J. Desmet, D. Clarisse, E. Estebanez-Perpina, L. Brunsveld, Nuclear receptor crosstalk–Defining the mechanisms for therapeutic innovation. Nat. Rev. Endocrinol. 16, 363–377 (2020).
M. F. Ogara et al., The glucocorticoid receptor interferes with progesterone receptor-dependent genomic regulation in breast cancer cells. Nucleic Acids Res. 47, 10645–10661 (2019).
L. Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
C. E. Gomez-Sanchez et al., Development of a panel of monoclonal antibodies against the mineralocorticoid receptor. Endocrinology 147, 1343–1348 (2006).
S. Heinz et al., Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
J. A. Hoffman, K. W. Trotter, J. M. Ward, T. K. Archer, BRG1 governs glucocorticoid receptor interactions with chromatin and pioneer factors across the genome. Elife 7, e35073 (2018).
D. A. Garcia et al., Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. Nucleic Acids Res. 49, 6605–6620 (2021).
D. Mazza, A. Abernathy, N. Golob, T. Morisaki, J. G. McNally, A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).
T. A. Johnson et al., The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor. Gene Expression Omnibus (GEO). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE232089. Deposited 23 July 2024.
T. A. Johnson et al., Data for “The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor.” Zenodo. https://doi.org/10.5281/zenodo.12570960. Deposited 27 June 2024.