Statistics and Probability; Information Systems; Education; Computer Science Applications; Statistics, Probability and Uncertainty; Library and Information Sciences
Abstract :
[en] Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Xie, Mingjuan ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; Department of Geography, Ghent University, Ghent, 9000, Belgium ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China ; Sino-Belgian Joint Laboratory for Geo-Information, Urumqi, China ; Sino-Belgian Joint Laboratory for Geo-Information, Ghent, Belgium
Ma, Xiaofei ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China
Wang, Yuangang ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Li, Chaofan ; School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Shi, Haiyang ; School of Earth Sciences and Engineering, Hohai University, Nanjing, 211100, China
Yuan, Xiuliang; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China
Hellwich, Olaf; Department of Computer Vision & Remote Sensing, Technische Universität Berlin, 10587, Berlin, Germany
Chen, Chunbo; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China
Zhang, Wenqiang ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; Department of Geography, Ghent University, Ghent, 9000, Belgium ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China ; Sino-Belgian Joint Laboratory for Geo-Information, Urumqi, China ; Sino-Belgian Joint Laboratory for Geo-Information, Ghent, Belgium
Zhang, Chen ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Ling, Qing ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Gao, Ruixiang ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Zhang, Yu ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; Department of Geography, Ghent University, Ghent, 9000, Belgium ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China ; Sino-Belgian Joint Laboratory for Geo-Information, Urumqi, China ; Sino-Belgian Joint Laboratory for Geo-Information, Ghent, Belgium
Ochege, Friday Uchenna ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; Department of Geography and Environmental Management, University of Port Harcourt, PMB 5323 Choba, East-West, Port Harcourt, Nigeria
Frankl, Amaury ; Department of Geography, Ghent University, Ghent, 9000, Belgium
De Maeyer, Philippe; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China ; Department of Geography, Ghent University, Ghent, 9000, Belgium ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China ; Sino-Belgian Joint Laboratory for Geo-Information, Urumqi, China ; Sino-Belgian Joint Laboratory for Geo-Information, Ghent, Belgium
Buchmann, Nina ; Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
Feigenwinter, Iris; Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
Olesen, Jørgen E ; Department of Agroecology, Aarhus University, Tjele, Denmark
Juszczak, Radoslaw; Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Piatkowska 94, 60-649, Poznan, Poland
Jacotot, Adrien ; Sol, Agro et hydrosystèmes, Spatialisation (SAS), UMR 1069, INRAE, Institut Agro, 35000, Rennes, France
Korrensalo, Aino; Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu campus, P.O Box 111, Joensuu, FI-80101, Finland ; Natural Resources Institute Finland, Joensuu, Yliopistokatu 6, FI-80130, Joensuu, Finland
Pitacco, Andrea ; University of Padova - DAFNAE, Viale dell'Università 16, I-35020, Padova, Legnaro (PD), Italy
Varlagin, Andrej ; A.N Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071, Leninsky pr.33, Moscow, Russia
Shekhar, Ankit ; Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
Lohila, Annalea ; Climate System Research, Finnish Meteorological Institute, P.O Box 503, FI-00101, Helsinki, Finland ; University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, Helsinki, Finland
Brut, Aurore; CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France
Kruijt, Bart ; Wageningen Univertsity, Water Systems and Global change group, PO bx 47, 7700AA, Wageningen, Netherlands
Loubet, Benjamin; ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 22 place de l'agronomie, 91120, Palaiseau, France
Heinesch, Bernard ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges (BIODYNE)
Chojnicki, Bogdan; Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Piatkowska 94, 60-649, Poznan, Poland
Helfter, Carole ; UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik, EH26 0QB, UK
Vincke, Caroline; Earth and Life Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
Shao, Changliang; National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
Bernhofer, Christian ; Institute of Hydrology and Meteorology, TUD Dresden University of Technology, Pienner Str. 23, 01737, Tharandt, Germany
Brümmer, Christian ; Thünen Institute of Climate-Smart Agriculture, 38116, Braunschweig, Germany
Wille, Christian ; GFZ German Research Centre for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
Tuittila, Eeva-Stiina ; School of Forest Sciences, University of Eastern Finland, P.O Box 111, FIN-80100, Joensuu, Finland
Nemitz, Eiko; UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik, EH26 0QB, UK
Meggio, Franco ; University of Padova - DAFNAE, Viale dell'Università 16, I-35020, Padova, Legnaro (PD), Italy
Dong, Gang; School of Life Science, Shanxi University, Taiyuan, 030006, China
Niedrist, Georg ; Eurac research, Institute for Alpine Environment, Viale Druso 1, 39100, Bolzano, Italy
Wohlfahrt, Georg ; Institut für Ökologie, Universität Innsbruck, Innrain 52, 6020, Innsbruck, Austria
Zhou, Guoyi; Institute of Ecology and School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Goded, Ignacio ; European Commission, Joint Research Centre (JRC), Ispra, Italy
Gruenwald, Thomas ; Institute of Hydrology and Meteorology, TUD Dresden University of Technology, Pienner Str. 23, 01737, Tharandt, Germany
Olejnik, Janusz ; Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Piatkowska 94, 60-649, Poznan, Poland
Jansen, Joachim ; Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
Neirynck, Johan ; Research Institute for Nature and Forest, Geraardsbergen, 9500, Belgium
Tuovinen, Juha-Pekka ; Climate System Research, Finnish Meteorological Institute, P.O Box 503, FI-00101, Helsinki, Finland
Zhang, Junhui; School of life sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu, 273165, Shandong, China
Klumpp, Katja ; Grassland Ecosystem Research, INRAE, VetAgro-Sup, University of Clermont Auvergne, 5 Chemin de Beaulieu, 63000, Clermont Ferrand, France
Pilegaard, Kim; Department of Environmental Engineering, Technical University of Denmark (DTU), Kgs, Lyngby, 2800, Denmark
Šigut, Ladislav ; Department of Matter and Energy Fluxes, Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
Klemedtsson, Leif ; Departement of Earth Sciences, Gothenburg University, Guldhedsgatan 5A, Po.Box 460, SE 405 30, Gothenburg, Sweden
Tezza, Luca ; University of Padova - DAFNAE, Viale dell'Università 16, I-35020, Padova, Legnaro (PD), Italy
Hörtnagl, Lukas ; Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
Urbaniak, Marek ; Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Piatkowska 94, 60-649, Poznan, Poland
Roland, Marilyn ; Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
Schmidt, Marius ; Agrosphere Institute IBG-3, Forschungszentrum Jülich, Jülich, 52425, Germany
Sutton, Mark A; UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik, EH26 0QB, UK
Hehn, Markus; Institute of Hydrology and Meteorology, TUD Dresden University of Technology, Pienner Str. 23, 01737, Tharandt, Germany
Saunders, Matthew ; School of Natural Sciences, Botany Discipline, Trinity College Dublin, D2, Dublin, Ireland
Mauder, Matthias; Institute of Hydrology and Meteorology, TUD Dresden University of Technology, Pienner Str. 23, 01737, Tharandt, Germany
Aurela, Mika ; Climate System Research, Finnish Meteorological Institute, P.O Box 503, FI-00101, Helsinki, Finland
Korkiakoski, Mika ; Climate System Research, Finnish Meteorological Institute, P.O Box 503, FI-00101, Helsinki, Finland
Du, Mingyuan ; National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8517, Japan
Vendrame, Nadia ; Center Agriculture Food Environment, University of Trento, Via Edmund Mach 1, I-38010, Trento, San Michele all'Adige (TN), Italy
Kowalska, Natalia ; Department of Matter and Energy Fluxes, Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
Leahy, Paul G ; School of Engineering & Architecture, University College Cork, College Road, Cork, T12 K8AF, Republic of Ireland
Alekseychik, Pavel; Natural Resources Institute Finland, Bioeconomy and environment, 00790, Helsinki, Finland
Shi, Peili ; Lhasa Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
Weslien, Per ; Departement of Earth Sciences, Gothenburg University, Guldhedsgatan 5A, Po.Box 460, SE 405 30, Gothenburg, Sweden
Chen, Shiping; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
Fares, Silvano ; National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean, Portici, Naples, Italy
Friborg, Thomas ; Department of Geosciences and Natural Resource Management, University of Copenhagen, Oester Voldgade 10, 1350, Copenhagen K, Denmark
Tallec, Tiphaine; CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France
Kato, Tomomichi ; Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
Sachs, Torsten ; GFZ German Research Centre for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
Maximov, Trofim; Institute for Biological Problems of Cryolithozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia
di Cella, Umberto Morra; Climate Change Dept., Environmental Protection Agency of Aosta Valley, Saint-Christophe, I-11020, Italy
Moderow, Uta ; Institute of Hydrology and Meteorology, TUD Dresden University of Technology, Pienner Str. 23, 01737, Tharandt, Germany
Li, Yingnian ; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, 810008, China
He, Yongtao; Lhasa Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
Kosugi, Yoshiko; Laboratory of Forest Hydrology, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
Luo, Geping ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China. luogp@ms.xjb.ac.cn ; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. luogp@ms.xjb.ac.cn ; Sino-Belgian Joint Laboratory for Geo-Information, Urumqi, China. luogp@ms.xjb.ac.cn ; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region (proposed), Chinese Academy of Sciences, Urumqi, China. luogp@ms.xjb.ac.cn
This research was supported by the Tianshan Talent Cultivation (Grant No. 2022TSYCLJ0001), the Key Projects of the Natural Science Foundation of Xinjiang Autonomous Region (Grant No. 2022D01D01), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20060302), the High-End Foreign Experts Project and the China Scholarship Council. Mingjuan Xie was supported by a grant from the program of China Scholarship Council (ICPIT–International Cooperative Program for Innovative Talents, Grant No. 202110630005) during her stay in Ghent University, Gent, Belgium. Andrej Varlagin was supported by Russian Science Foundation (project 21-14-00209). Iris Feigenwinter was funded by the EU project SUPER-G (Grant No. 774124) and the SNF project ICOS-CH (Grant No. 20F120_198227). Ankit Shekhar acknowledges funding by the ETH Zürich project FEVER ETH-27 19-1. The University of Padova (AP, FM, LT) carried out the study within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). The part of this work was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia under the project “Study of biogeochemical cycles and adaptive reactions of plants of boreal and arctic ecosystems of northeastern Russia”, AAAA-A21-121012190034-2. We thank the many people who provided the metadata for this research. The MCD15A3H data, the MOD09GA data, the MCD12Q1 data and the MOD16A2 data were provided by the NASA EOSDIS Land Processes DAAC. The GOSAT dataset was obtained via the GOSAT Data Archive Service, and the GOSAT project is a joint effort promoted by the JAXA, the NIES and MOE. The DSR dataset during 1983–2018 and some of the flux station data were provided by the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn). Some of the flux station data were shared by the European Fluxes Database Cluster (http://www.europe-fluxdata.eu/home) and the FLUXNET, whose data providers include Adriano Conte, Adrien Jacotot, Aino Korrensalo, Alexander Knohl, Anders Lindroth, Andrea Pitacco, Andreas Ibrom, Andrej Varlagin, Ankit Shekhar, Annalea Lohila, Anne De Ligne, Arnaud Carrara, Aurore Brut, Axel Don, Ayumi Kotani, Bart Kruijt, Benjamin Loubet, Bernard Heinesch, Bogdan Chojnicki, Carlo Calfapietra, Carole Helfter, Caroline Vincke, Casimiro Pio, Changliang Shao, Christian Bernhofer, Christian Brümmer, Christian Markwitz, Christian Wille, Christoph Ammann, Claire Campbell, Cristina Gimeno, Dan Yakir, Daniel Berveiller, Daniela Franz, Dario Papale, Denis Loustau, Donatella Spano, Edoardo Cremonese, Eeva-Stiina Tuittila, Eiko Nemitz, Eric Ceschia, Eric Grehan, Eric Larmanou, Fabio Turco, Fanny Kittler, Fatima LAGGOUN, Filipe Costa e Silva, Francesco Mazzenga, Franco Meggio, Franco Miglietta, Francois Gastal, Franziska Koebsch, Frédéric Bornet, Frédéric Guibal, Frederik Schrader, Gang Dong, Gary J. Lanigan, Georg Niedrist, Georg Wohlfahrt, Gerald Jurasinski, Gerard Kiely, Giorgio Matteucci, Giovanni Manca, Giuseppe Scarascia Mugnozza, Guillaume Simioni, Guoyi Zhou, Hans Peter Schmid, Huimin Wang, Ignacio Goded, Iris Feigenwinter, Ivan Janssens, Thomas Gruenwald, Jan Elbers, Jan Segers, Janina Klatt, Janusz Olejnik, Jean-Christophe Calvet, Jean-Marc Limousin, Jean-Pierre Delorme, Jiri Dusek, Joachim Jansen, Joao Santos Pereira, Joel Leonard, Jørgen E. Olesen, Johan Neirynck, John Moncrieff, Juha Hatakka, Juha-Pekka Tuovinen, Junhua Yan, Junhui Zhang, Jutta Holst, Juuso Rainne, Kari Minkkinen, Karl Schneider, Katerina Havrankova, Katja KLUMPP, Kim Pilegaard, Ladislav Šigut, Leif Klemedtsson, Lenka Foltynova, Louis Gourlez de la Motte, Luca Tezza, Lukas Hörtnagl, Lutz Merbold, Marek Urbaniak, Mana Gharun, Margaret Anderson-Dunn, Marian Pavelka, Marilyn Roland, Marius Schmidt, Mark A. Sutton, Markus Hehn, Marta Galvagno, Mathias Goeckede, Mathilde Jammet, Matthew Saunders, Matthew Wilkinson, Matthias Cuntz, Matthias Mauder, Michal Heliasz, Michel Vennetier, Mika Aurela, Mika Korkiakoski, Mike Jones, Mingyuan Du, Mirco Migliavacca, Monique Carnol, Nadia Vendrame, Natalia Kowalska, Nelius Foley, Nicola Arriga, Nina Buchmann, Olaf Kolle, Olivier Marloie, Paolo Stefani, Pasi Kolari, Patrick Crill (Dept of Geological Sciences, Stockholm University, Sweden), Paul G. Leahy, Pauline Buysse, Pavel Alekseychik, Peili Shi, Per Weslien, Radek Czerny, Radoslaw Juszczak, Rainer Steinbrecher, Regine Maier, Rémy Soubie, Richard Harding, Rober Falcimagne, Robert Clement, Satoru Takanashi, Sebastien Gogo, Shijie Han, Shiping Chen, Silvano Fares, Sofia Cerasoli, Tanguy Manise, Tarek El-Madany, Thomas Friborg, Tim De Meulder, Timo Vesala, Tiphaine Tallec, Tiziano Sorgi, Tomomichi Kato, Torsten Sachs, Trofim Maximov, Tuomas Laurila, Umberto Morra di Cella, Uta Moderow, Valerio Moretti, Vincenzo Magliulo, Wilma Jans, Xianzhou Zhang, Xiaoli Fu, Yanhong Tang, Yi Wang, Yingnian Li, Yongtao He, Yoshiko Kosugi, Zoltan Nagy, and Zsolt Csintalan.This research was supported by the Tianshan Talent Cultivation (Grant No. 2022TSYCLJ0001), the Key Projects of the Natural Science Foundation of Xinjiang Autonomous Region (Grant No. 2022D01D01), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20060302), the High-End Foreign Experts Project and the China Scholarship Council. Mingjuan Xie was supported by a grant from the program of China Scholarship Council (ICPIT–International Cooperative Program for Innovative Talents, Grant No. 202110630005) during her stay in Ghent University, Gent, Belgium. Andrej Varlagin was supported by Russian Science Foundation (project 21-14-00209). Iris Feigenwinter was funded by the EU project SUPER-G (Grant No. 774124) and the SNF project ICOS-CH (Grant No. 20F120_198227). Ankit Shekhar acknowledges funding by the ETH Zürich project FEVER ETH-27 19-1. The University of Padova (AP, FM, LT) carried out the study within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). The part of this work was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia under the project “Study of biogeochemical cycles and adaptive reactions of plants of boreal and arctic ecosystems of northeastern Russia”, AAAA-A21-121012190034-2. We thank the many people who provided the metadata for this research. The MCD15A3H data, the MOD09GA data, the MCD12Q1 data and the MOD16A2 data were provided by the NASA EOSDIS Land Processes DAAC. The GOSAT dataset was obtained via the GOSAT Data Archive Service, and the GOSAT project is a joint effort promoted by the JAXA, the NIES and MOE. The DSR dataset during 1983–2018 and some of the flux station data were provided by the National Tibetan Plateau Data Center ( http://data.tpdc.ac.cn ). Some of the flux station data were shared by the European Fluxes Database Cluster ( http://www.europe-fluxdata.eu/home ) and the FLUXNET, whose data providers include Adriano Conte, Adrien Jacotot, Aino Korrensalo, Alexander Knohl, Anders Lindroth, Andrea Pitacco, Andreas Ibrom, Andrej Varlagin, Ankit Shekhar, Annalea Lohila, Anne De Ligne, Arnaud Carrara, Aurore Brut, Axel Don, Ayumi Kotani, Bart Kruijt, Benjamin Loubet, Bernard Heinesch, Bogdan Chojnicki, Carlo Calfapietra, Carole Helfter, Caroline Vincke, Casimiro Pio, Changliang Shao, Christian Bernhofer, Christian Brümmer, Christian Markwitz, Christian Wille, Christoph Ammann, Claire Campbell, Cristina Gimeno, Dan Yakir, Daniel Berveiller, Daniela Franz, Dario Papale, Denis Loustau, Donatella Spano, Edoardo Cremonese, Eeva-Stiina Tuittila, Eiko Nemitz, Eric Ceschia, Eric Grehan, Eric Larmanou, Fabio Turco, Fanny Kittler, Fatima LAGGOUN, Filipe Costa e Silva, Francesco Mazzenga, Franco Meggio, Franco Miglietta, Francois Gastal, Franziska Koebsch, Frédéric Bornet, Frédéric Guibal, Frederik Schrader, Gang Dong, Gary J. Lanigan, Georg Niedrist, Georg Wohlfahrt, Gerald Jurasinski, Gerard Kiely, Giorgio Matteucci, Giovanni Manca, Giuseppe Scarascia Mugnozza, Guillaume Simioni, Guoyi Zhou, Hans Peter Schmid, Huimin Wang, Ignacio Goded, Iris Feigenwinter, Ivan Janssens, Thomas Gruenwald, Jan Elbers, Jan Segers, Janina Klatt, Janusz Olejnik, Jean-Christophe Calvet, Jean-Marc Limousin, Jean-Pierre Delorme, Jiri Dusek, Joachim Jansen, Joao Santos Pereira, Joel Leonard, Jørgen E. Olesen, Johan Neirynck, John Moncrieff, Juha Hatakka, Juha-Pekka Tuovinen, Junhua Yan, Junhui Zhang, Jutta Holst, Juuso Rainne, Kari Minkkinen, Karl Schneider, Katerina Havrankova, Katja KLUMPP, Kim Pilegaard, Ladislav Šigut, Leif Klemedtsson, Lenka Foltynova, Louis Gourlez de la Motte, Luca Tezza, Lukas Hörtnagl, Lutz Merbold, Marek Urbaniak, Mana Gharun, Margaret Anderson-Dunn, Marian Pavelka, Marilyn Roland, Marius Schmidt, Mark A. Sutton, Markus Hehn, Marta Galvagno, Mathias Goeckede, Mathilde Jammet, Matthew Saunders, Matthew Wilkinson, Matthias Cuntz, Matthias Mauder, Michal Heliasz, Michel Vennetier, Mika Aurela, Mika Korkiakoski, Mike Jones, Mingyuan Du, Mirco Migliavacca, Monique Carnol, Nadia Vendrame, Natalia Kowalska, Nelius Foley, Nicola Arriga, Nina Buchmann, Olaf Kolle, Olivier Marloie, Paolo Stefani, Pasi Kolari, Patrick Crill (Dept of Geological Sciences, Stockholm University, Sweden), Paul G. Leahy, Pauline Buysse, Pavel Alekseychik, Peili Shi, Per Weslien, Radek Czerny, Radoslaw Juszczak, Rainer Steinbrecher, Regine Maier, Rémy Soubie, Richard Harding, Rober Falcimagne, Robert Clement, Satoru Takanashi, Sebastien Gogo, Shijie Han, Shiping Chen, Silvano Fares, Sofia Cerasoli, Tanguy Manise, Tarek El-Madany, Thomas Friborg, Tim De Meulder, Timo Vesala, Tiphaine Tallec, Tiziano Sorgi, Tomomichi Kato, Torsten Sachs, Trofim Maximov, Tuomas Laurila, Umberto Morra di Cella, Uta Moderow, Valerio Moretti, Vincenzo Magliulo, Wilma Jans, Xianzhou Zhang, Xiaoli Fu, Yanhong Tang, Yi Wang, Yingnian Li, Yongtao He, Yoshiko Kosugi, Zoltan Nagy, and Zsolt Csintalan.
Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).
Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).
Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 1–14 (2019).
Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).
Wang, R. et al. Recent increase in the observation-derived land evapotranspiration due to global warming. Environ. Res. Lett. 17, 024020 (2022).
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
Li, X. et al. Intercomparison of six upscaling evapotranspiration methods: From site to the satellite pixel. J. Geophys. Res.-Atmos. 123, 6777–6803 (2018).
Shi, H. et al. Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis. Hydrol. Earth Syst. Sci. 26, 4603–4618 (2022).
Shi, H. et al. Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation. Biogeosciences 19, 3739–3756 (2022).
Xu, T. et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J. Geophys. Res.-Atmos. 123, 8674–8690 (2018).
Bzdok, D., Nichols, T. E. & Smith, S. M. Towards algorithmic analytics for large-scale datasets. Nat. Mach. Intell. 1, 296–306 (2019).
Fatima, M. & Pasha, M. Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 9, 1 (2017).
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015).
Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260 (2015).
Zhu, A. X., Lu, G., Liu, J., Qin, C. Z. & Zhou, C. Spatial prediction based on Third Law of Geography. Ann. GIS 24, 225–240 (2018).
Xie, M. Flux station information. figshare 10.6084/m9.figshare.23899701.v1 (2023).
Che, T., Xu, Z., Ren, Z., Tan, J. & Zhang, Y. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Zhangye wetland station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270677 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Huazhaizi desert steppe station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270680 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of Meteorological elements gradient of Sidaoqiao Superstation, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270698 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of mixed forest station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270681 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270689 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Huazhaizi station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270684 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270685 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Zhangye wetland station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270690 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of mixed forest station, 2020). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.271403 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of Meteorological elements gradient of Sidaoqiao Superstation, 2020). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.271542 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2020). National Tibetan Plateau Data Center 10.11888/Geogra.tpdc.271440 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Zhangye wetland station, 2020). National Tibetan Plateau Data Center 10.11888/Geogra.tpdc.271437 (2021).
Liu, S., Che, T., Xu, Z., Ren, Z. & Zhang, Y. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Zhangye wetland station, 2020). National Tibetan Plateau Data Center 10.11888/Geogra.tpdc.271441 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2020). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.271399 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of Meteorological elements gradient of A’rou Superstation, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270694 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of A’rou Superstation, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270691 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Dashalong station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270757 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Dashalong station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270687 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Jingyangling station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270682 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Jingyangling station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270688 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Yakou station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270678 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Yakou station, 2019). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270686 (2020).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of Meteorological elements gradient of A’rou Superstation, 2020). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.271415 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of A’rou Superstation, 2020). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.271406 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Jingyangling station, 2020). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.271400 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Jingyangling station, 2020). National Tibetan Plateau Data Center 10.11888/Geogra.tpdc.271409 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Yakou station, 2020). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.271398 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Yakou station, 2020). National Tibetan Plateau Data Center 10.11888/Geogra.tpdc.271408 (2021).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Dashalong station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270779 (2019).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.184.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.261.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of Hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.318.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of mixed forest station, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.197.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of mixed forest station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.241.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of mixed forest station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.301.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydro-meteorological observation network (automatic weather station of Huazhaizi Desert Steppe Station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.257.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huazhaizi desert steppe station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.325.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Huazhaizi desert Station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.240.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Huazhaizi desert station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.305.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Sidaoqiao superstation, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.187.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an observation system of Meteorological elements gradient of Sidaoqiao Superstation, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.264.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Sidaoqiao Superstation, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.321.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Sidaoqiao superstation, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.200.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Sidaoqiao superstation, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.245.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Sidaoqiao superstation, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.304.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.192.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.265.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.327.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Zhangye wetland station, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.206.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Zhangye wetland Station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.307.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.461.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of mixed forest station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.450.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huazhaizi desert steppe station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.459.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Huazhaizi desert station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.448.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Sidaoqiao Superstation, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.463.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Sidaoqiao superstation, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.451.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.465.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Zhangye wetland Station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.453.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.21.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of mixed forest station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.10.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huazhaizi desert steppe station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.19.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Huazhaizi desert station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.8.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of Hydrometeorological observation network (an observation system of Meteorological elements gradient of Sidaoqiao Superstation, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.23.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Sidaoqiao superstation, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.11.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.25.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Zhangye wetland Station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.13.2018.db (2018).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of mixed forest station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270771 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270785 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (automatic weather station of Huazhaizi desert steppe station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270773 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Huazhaizi station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270787 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (automatic weather station of Jingyangling station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270770 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of Sidaoqiao superstation, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270780 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270782 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Zhangye wetland station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270768 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Zhangye wetland station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270783 (2019).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of A’rou Superstation, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.248.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of A’rou superstation, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.308.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of A’rou Superstation, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.235.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of A’rou Superstation, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.296.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (Dashalong automatic meteorological station, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.178.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Dashalong station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.251.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Dashalong station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.310.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of Hydrometeorological observation network (eddy covariance system of Dashalong station, 2013). National Tibetan Plateau Data Center 10.3972/hiwater.195.2014.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Dashalong station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.238.2015.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Dashalong station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.297.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Yakou station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.315.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Yakou station, 2015). National Tibetan Plateau Data Center 10.3972/hiwater.298.2016.db (2016).
Liu, S. et al. HiWATER: Dataset of hydro-meteorological observation network (automatic weather station of Dashalong station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.456.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Dashalong station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.447.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Yakou station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.464.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Yakou station, 2016). National Tibetan Plateau Data Center 10.3972/hiwater.452.2017.db (2017).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of A’rou Superstation, 2017). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270897 (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of A’rou Superstation, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.5.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydro-meteorological observation network (automatic weather station of Dashalong station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.16.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Dashalong station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.7.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Yakou station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.14.2018.db (2018).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Yakou station, 2017). National Tibetan Plateau Data Center 10.3972/hiwater.12.2018.db (2018).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of A’rou Superstation, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270777 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of A’rou superstation, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270775 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Dashalong station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270788 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (eddy covariance system of Jingyangling station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270784 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Yakou station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270769 (2019).
Liu, S. et al. Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (eddy covariance system of Yakou station, 2018). National Tibetan Plateau Data Center 10.11888/Meteoro.tpdc.270781 (2019).
Liu, S., Li, X. & Xu, Z. HiWATER: Dataset of flux observation matrix (automatic meteorological station of No.1) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). National Tibetan Plateau Data Center 10.3972/hiwater.059.2013.db (2016).
Liu, S., Li, X. & Xu, Z. HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (No.1 eddy covariance system). National Tibetan Plateau Data Center 10.3972/hiwater.080.2013.db (2016).
Liu, S., Li, X. & Xu, Z. HiWATER: Dataset of flux observation matrix (automatic meteorological station of No.17) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). National Tibetan Plateau Data Center 10.3972/hiwater.075.2013.db (2016).
Liu, S., Li, X. & Xu, Z. HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix (No.17 eddy covariance system) from Mar to Sep, 2012. National Tibetan Plateau Data Center 10.3972/hiwater.095.2013.db (2016).
Liu, S. et al. HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Zhangye wetland Station, 2014). National Tibetan Plateau Data Center 10.3972/hiwater.246.2015.db (2016).
Liu, S. & Xu, Z. Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Daxing site-automatic weather station) (2008-2010). National Tibetan Plateau Data Center 10.3972/haihe.004.2013.db (2016).
Liu, S. & Xu, Z. Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Daxing site - eddy covariance system) (2008-2010). National Tibetan Plateau Data Center 10.3972/haihe.005.2013.db (2016).
Che, T. et al. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth Syst. Sci. Data 11, 1483–1499 (2019).
Jia, Z., Liu, S., Xu, Z., Chen, Y. & Zhu, M. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. J. Geophys. Res.-Atmos. 117, D13113 (2012).
Liu, S. et al. The heihe integrated observatory network: a basin‐scale land surface processes observatory in China. Vadose Zone J. 17, 1–21 (2018).
Liu, S. et al. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 230-231, 97–113 (2016).
Liu, S. et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 15, 1291–1306 (2011).
Liu, S., Xu, Z., Zhu, Z., Jia, Z. & Zhu, M. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 487, 24–38 (2013).
Xu, Z. et al. Intercomparison of surface energy flux measurement systems used during the HiWATER‐MUSOEXE. J. Geophys. Res.-Atmos. 118, 13140–13157 (2013).
Dušek, J., Faußer, A., Stellner, S. & Kazda, M. Stems of Phragmites australis are buffering methane and carbon dioxide emissions. Sci. Total Environ. 882, 163493 (2023).
Foltýnová, L., Fischer, M. & McGloin, R. P. Recommendations for gap-filling eddy covariance latent heat flux measurements using marginal distribution sampling. Theor. Appl. Climatol. 139, 677–688 (2020).
Granier, A., Bréda, N., Longdoz, B., Gross, P. & Ngao, J. Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Ann. For. Sci. 65, 704 (2008).
Kivalov, S. N. et al. Addressing effects of environment on eddy-covariance flux estimates at a Temperate Sedge-Grass Marsh. Bound.-Layer Meteor. 186, 217–250 (2023).
Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015–5030 (2018).
Aurela, M., Laurila, T., Hatakka, J., Tuovinen, J.-P. & Rainne, J. FLUXNET2015 RU-Tks Tiksi. FLUXNET 10.18140/FLX/1440244 (2016).
Bernhofer, C. et al. FLUXNET2015 DE-Spw Spreewald. FLUXNET 10.18140/FLX/1440220 (2016).
Bernhofer, C. et al. FLUXNET2015 DE-Tha Tharandt. FLUXNET 10.18140/FLX/1440152 (2016).
Chen, S. FLUXNET2015 CN-Du2 Duolun_grassland. FLUXNET 10.18140/FLX/1440140 (2016).
Dong, G. FLUXNET2015 CN-Cng Changling. FLUXNET 10.18140/FLX/1440209 (2016).
Ibrom, A. & Pilegaard, K. FLUXNET2015 DK-Sor Soroe. FLUXNET 10.18140/FLX/1440155 (2016).
Klatt, J., Schmid, H., Mauder, M. & Steinbrecher, R. FLUXNET2015 DE-SfN Schechenfilz Nord. FLUXNET 10.18140/FLX/1440219 (2016).
Kosugi, Y. & Takanashi, S. FLUXNET2015 MY-PSO Pasoh Forest Reserve (PSO). FLUXNET 10.18140/FLX/1440240 (2016).
Li, Y. FLUXNET2015 CN-Ha2 Haibei Shrubland. FLUXNET 10.18140/FLX/1440211 (2016).
Maximov, T. FLUXNET2015 RU-SkP Yakutsk Spasskaya Pad larch. FLUXNET 10.18140/FLX/1440243 (2016).
Olesen, J. FLUXNET2015 DK-Fou Foulum. FLUXNET 10.18140/FLX/1440154 (2016).
Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225, 10.1038/s41597-020-0534-3 (2020). DOI: 10.1038/s41597-020-0534-3
Pilegaard, K. & Ibrom, A. FLUXNET2015 DK-Eng Enghave. FLUXNET 10.18140/FLX/1440153 (2016).
Sachs, T., Wille, C., Larmanou, E. & Franz, D. FLUXNET2015 DE-Zrk Zarnekow. FLUXNET 10.18140/FLX/1440221 (2016).
Schneider, K. & Schmidt, M. FLUXNET2015 DE-Seh Selhausen. FLUXNET 10.18140/FLX/1440217 (2016).
Shao, C. FLUXNET2015 CN-Du3 Duolun Degraded Meadow. FLUXNET 10.18140/FLX/1440210 (2016).
Shao, C. FLUXNET2015 CN-Sw2 Siziwang Grazed (SZWG). FLUXNET 10.18140/FLX/1440212 (2016).
Zhang, J. & Han, S. FLUXNET2015 CN-Cha Changbaishan. FLUXNET 10.18140/FLX/1440137 (2016).
Zhou, G. & Yan, J. FLUXNET2015 CN-Din Dinghushan. FLUXNET 10.18140/FLX/1440139 (2016).
Anapalli, S. S. et al. Quantifying soybean evapotranspiration using an eddy covariance approach. Agric. Water Manage. 209, 228–239 (2018).
Xie, M. et al. Simulation of site-scale water fluxes in desert and natural oasis ecosystems of the arid region in Northwest China. Hydrol. Process. 35, e14444 (2021).
Zhang, C. et al. A framework for estimating actual evapotranspiration at weather stations without flux observations by combining data from MODIS and flux towers through a machine learning approach. J. Hydrol. 603, 127047 (2021).
Liang, S. et al. The global land surface satellite (GLASS) product suite. Bull. Amer. Meteorol. Soc. 102, 1–37 (2020).
Zhang, X., Liang, S., Zhou, G., Wu, H. & Zhao, X. Generating Global Land Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 152, 318–332 (2014).
Tang, W. Dataset of high-resolution (3 hour, 10 km) global surface solar radiation (1983–2018). National Tibetan Plateau Data Center https://cstr.cn/18406.11.Meteoro.tpdc.270112 (2019).
Tang, W., Yang, K., Qin, J., Li, X. & Niu, X. A 16-year dataset (2000-2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth Syst. Sci. Data 11, 1905–1915 (2019).
Myneni, R., Knyazikhin, Y. & Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC 10.5067/MODIS/MCD15A3H.006 (2015).
Vermote, E. & Wolfe, R. MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1kmand 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC 10.5067/MODIS/MOD09GA.006 (2015).
Fang, B., Lei, H., Zhang, Y., Quan, Q. & Yang, D. Spatio-temporal patterns of evapotranspiration based on upscaling eddy covariance measurements in the dryland of the North China Plain. Agric. For. Meteorol. 281, 107844 (2020).
Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).
FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML (2012).
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC 10.5067/MODIS/MCD12Q1.006 (2019).
Sorensen, L. A spatial analysis approach to the global delineation of dryland areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands. UNEP-WCMC https://www2.unep-wcmc.org/resources-and-data/a-spatial-analysis-approach-to-the-global-delineation-of-dryland-areas-of-relevance-to-the-cbd-programme-of-work-on-dry-and-subhumid-lands (2007).
Xie, M. Division of flux stations. figshare 10.6084/m9.figshare.23695980.v2 (2023).
Lopatin, J., Dolos, K., Hernández, H., Galleguillos, M. & Fassnacht, F. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sens. Environ. 173, 200–210 (2016).
Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 13, 1063–1095 (2012).
Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D. D. Hyperopt: a python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 014008 (2015).
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 1–11 (2020).
Patel, S. P. & Upadhyay, S. H. Euclidean distance based feature ranking and subset selection for bearing fault diagnosis. Expert Syst. Appl. 154, 113400 (2020).
Lever, J., Krzywinski, M. & Altman, N. Points of significance: Principal component analysis. Nat. Methods 14, 641–643 (2017).
Xie, M. Carbon-water flux datasets of Eurasian meteorological stations. figshare 10.6084/m9.figshare.21347721.v3 (2022).
Xie, M. Meteorological station information. figshare 10.6084/m9.figshare.23695920.v2 (2023).
Xie, M. RSMs information. figshare 10.6084/m9.figshare.23899785.v1 (2023).
Jiang, F. et al. A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO 2 retrievals (GCAS2021). Earth Syst. Sci. Data 14, 3013–3037 (2022).
Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC 10.5067/MODIS/MOD16A2.006 (2017).
Xie, M. Code for mining carbon-water flux information at Eurasian meteorological stations. figshare 10.6084/m9.figshare.21510183.v2 (2022).