Effectiveness of bio-effectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis.
Nkebiwe, Peteh Mehdi; Stevens Lekfeldt, Jonas D; Symanczik, Sarahet al.
2024 • In Frontiers in Plant Science, 15, p. 1333249
[en] Biostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.
Nkebiwe, Peteh Mehdi ; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Stevens Lekfeldt, Jonas D; Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
Symanczik, Sarah; Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
Thonar, Cécile ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
Mäder, Paul; Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
Bar-Tal, Asher; Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
Halpern, Moshe; Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel ; Gilat Research Center, Agricultural Research Organization, Gilat, Israel
Biró, Borbala; Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
Bradáčová, Klára; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Caniullan, Pedro C; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Choudhary, Krishna K; Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
Cozzolino, Vincenza; Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Italy
Di Stasio, Emilio; Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
Dobczinski, Stefan; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Geistlinger, Joerg; Institute of Bioanalytical Sciences, Anhalt University of Applied Sciences, Bernburg, Germany
Lüthi, Angelika; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Gómez-Muñoz, Beatriz; Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
Kandeler, Ellen; Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
Kolberg, Flora; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Kotroczó, Zsolt; Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
Kulhanek, Martin; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences in Prague, Suchdol, Czechia
Mercl, Filip; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences in Prague, Suchdol, Czechia
Tamir, Guy; Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel ; Gilat Research Center, Agricultural Research Organization, Gilat, Israel
Moradtalab, Narges; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Piccolo, Alessandro; Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici, Italy
Maggio, Albino; Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
Nassal, Dinah; Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
Szalai, Magdolna Zita; Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
Juhos, Katalin; Department of Agro-Environmental Studies, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
Fora, Ciprian G; Department of Horticulture, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timișoara, Romania
Florea, Andreea; Department of Horticulture, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timișoara, Romania
Poşta, Gheorghe; Department of Horticulture, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timișoara, Romania
Lauer, Karl Fritz; Department of Horticulture, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timișoara, Romania
Toth, Brigitta; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany ; Institute of Food Science, Faculty of Agricultural and Food Sciences and Agricultural Management, University of Debrecen, Debrecen, Hungary
Tlustoš, Pavel; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences in Prague, Suchdol, Czechia
Mpanga, Isaac K; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Weber, Nino; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Weinmann, Markus; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Yermiyahu, Uri; Gilat Research Center, Agricultural Research Organization, Gilat, Israel
Magid, Jakob; Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
Müller, Torsten; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Neumann, Günter; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
Ludewig, Uwe; Institute of Crop Science, Departments of Nutritional Crop Physiology and Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
de Neergaard, Andreas; Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark ; Roskilde University, Roskilde, Denmark
Effectiveness of bio-effectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis.
FP7 - 312117 - BIOFECTOR - Resource Preservation by Application of BIOefFECTORs in European Crop Production
Funders :
European Union
Funding text :
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was funded by the European Community\u2019s Seventh Framework Programme (FP7/2007\u20132013) under grant agreement no. 312117 (BIOFECTOR). PN was partly supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) \u2013 328017493/GRK 2366 (International Research Training Group \u201CAdaptation of maize-based food-feed-energy systems to limited phosphate resources\u201D).
Ansari M. F. Tipre D. R. Dave S. R. (2015). Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal. Agric. Biotechnol. 4, 17–24. doi: 10.1016/j.bcab.2014.09.010
Backer R. Rokem J. S. Ilangumaran G. Lamont J. Praslickova D. Ricci E. et al. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01473
Barea J.-M. Pozo M. J. Azcón R. Azcón-Aguilar C. (2005). Microbial co-operation in the rhizosphere. J. Exp. Bot. 56, 1761–1778. doi: 10.1093/jxb/eri197
Bennett A. B. Pankievicz V. C. Ané J.-M. (2020). A model for nitrogen fixation in cereal crops. Trends Plant Sci. 25, 226–235. doi: 10.1016/j.tplants.2019.12.004
Berg G. Kusstatscher P. Abdelfattah A. Cernava T. Smalla K. (2021). Microbiome modulation—Toward a better understanding of plant microbiome response to microbial inoculants. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.650610
Bittman S. Kowalenko C. G. Hunt D. E. Forge T. A. Wu X. (2006). Starter phosphorus and broadcast nutrients on corn with contrasting colonization by mycorrhizae. Agron. J. 98, 394–401. doi: 10.2134/agronj2005.0093
Bona E. Cantamessa S. Massa N. Manassero P. Marsano F. Copetta A. et al. (2017). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27, 1–11. doi: 10.1007/s00572-016-0727-y
Borenstein M. Hedges L. V. Higgins J. P. T. Rothstein H. R. (2011). Introduction to meta-analysis (Chichester, West Sussex, UK: John Wiley & Sons).
Borriss R. (2015). “Towards a new generation of commercial microbial disease control and plant growth promotion products,” in Principles of plant-microbe interactions: microbes for sustainable agriculture. Ed. Lugtenberg B. (Springer International Publishing, Cham), 329–337. doi: 10.1007/978-3-319-08575-3_34
Bradáčová K. Florea A. S. Bar-Tal A. Minz D. Yermiyahu U. Shawahna R. et al. (2019a). Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted tomato production? Agronomy 9, 105. doi: 10.3390/agronomy9020105
Bradáčová K. Sittinger M. Tietz K. Neuhäuser B. Kandeler E. Berger N. et al. (2019b). Maize inoculation with microbial consortia: contrasting effects on rhizosphere activities, nutrient acquisition and early growth in different soils. Microorganisms 7, 329. doi: 10.3390/microorganisms7090329
Chekanai V. Chikowo R. Vanlauwe B. (2018). Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agric. Ecosyst. Environ. 266, 167–173. doi: 10.1016/j.agee.2018.08.010
Colomb B. Kiniry J. R. Debaeke P. (2000). Effect of soil phosphorus on leaf development and senescence dynamics of field-grown maize. Agron. J. 92, 428–435. doi: 10.2134/agronj2000.923428x
Cordell D. Drangert J.-O. White S. (2009). The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 19, 292–305. doi: 10.1016/j.gloenvcha.2008.10.009
Cozzolino V. Monda H. Savy D. Di Meo V. Vinci G. Smalla K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chem. Biol. Technol. Agric. 8, 31. doi: 10.1186/s40538-021-00230-x
de S. R. Ambrosini A. Passaglia L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38, 401–419. doi: 10.1590/S1415-475738420150053
Del Re A. C. (2015). A practical tutorial on conducting meta-analysis in R. Quant. Method Psychol. 11, 37–50. doi: 10.20982/tqmp.11.1.p037
Dobbelaere S. Croonenborghs A. Thys A. Ptacek D. Vanderleyden J. Dutto P. et al. (2001). Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol. 28, 871–879. doi: 10.1071/PP01074
Du Jardin P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. doi: 10.1016/j.scienta.2015.09.021
Dunbabin V. M. Armstrong R. D. Officer S. J. Norton R. M. (2009). Identifying fertiliser management strategies to maximise nitrogen and phosphorus acquisition by wheat in two contrasting soils from Victoria, Australia. Soil Res. 47, 74–90. doi: 10.1071/SR08107
Egamberdiyeva D. (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184–189. doi: 10.1016/j.apsoil.2007.02.005
Eltlbany N. Baklawa M. Ding G.-C. Nassal D. Weber N. Kandeler E. et al. (2019). Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts. FEMS Microbiol. Ecol. 95, fiz124. doi: 10.1093/femsec/fiz124
Francioli D. Schulz E. Lentendu G. Wubet T. Buscot F. Reitz T. (2016). Mineral vs. Organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.01446
Gattinger A. Muller A. Haeni M. Skinner C. Fliessbach A. Buchmann N. et al. (2012). Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. U.S.A. 109, 18226. doi: 10.1073/pnas.1209429109
Gómez-Muñoz B. Pittroff S. M. de N. A. LS J. MH N. Magid J. (2017). Penicillium bilaii effects on maize growth and P uptake from soil and localized sewage sludge in a rhizobox experiment. Biol. Fertil. Soils 53, 23–35. doi: 10.1007/s00374-016-1149-x
Grant review research. (2020). Market analysis report: biofertilizers market size, share & Trends analysis report by product (Nitrogen fixing, phosphate solubilizing), by application (Seed treatment, soil treatment), by crop type, by region, and segment forecasts, 2020 - 2027. Available online at: https://www.researchandmarkets.com/reports/5117694/biofertilizers-market-size-share-and-trends (Accessed 17 Sep 2020).
Habeck C. W. Schultz A. K. (2015). Community-level impacts of white-tailed deer on understorey plants in North American forests: a meta-analysis. AoB Plants 7, 1–12. doi: 10.1093/aobpla/plv119
Halpern M. Bar-Tal A. Ofek M. Minz D. Muller T. Yermiyahu U. (2015). Chapter two - the use of biostimulants for enhancing nutrient uptake. Adv. Agron. p, 141–174. doi: 10.1016/bs.agron.2014.10.001
Han H.-S. Lee K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ. 52, 130. doi: 10.17221/3356-PSE
Harman G. E. (2006). Overview of mechanisms and uses of trichoderma spp. Phytopathology 96, 190–194. doi: 10.1094/PHYTO-96-0190
Hedges L. V. Gurevitch J. Curtis P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
Herrmann M. N. Wang Y. Hartung J. Hartmann T. Zhang W. Nkebiwe P. M. et al. (2022). A global network meta-analysis of the promotion of crop growth, yield, and quality by bioeffectors. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.816438
Hinsinger P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237, 173–195. doi: 10.1023/A:1013351617532
Karamanos R. E. Flore N. A. Harapiak J. T. (2010). Re-visiting use of Penicillium bilaii with phosphorus fertilization of hard red spring wheat. Can. J. Plant Sci. 90, 265–277. doi: 10.4141/CJPS09123
Kontopantelis E. Reeves D. (2010). Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A simulation study. Stat. Methods Med. Res. 21, 409–426. doi: 10.1177/0962280210392008
Kontopantelis E. Reeves D. (2012). Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A comparison between DerSimonian–Laird and restricted maximum likelihood. Stat. Methods Med. Res. 21, 657–659. doi: 10.1177/0962280211413451
Kucey R. M. N. (1987). Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing
Kumar M. Mishra S. Dixit V. Agarwal L. Chauhan P. S. Nautiyal C. S. (2016). Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signal Behav. 11, e1071004. doi: 10.1080/15592324.2015.1071004
Lajeunesse M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049–2055. doi: 10.1890/11-0423.1
Leggett M. Newlands N. K. Greenshields D. West L. Inman S. Koivunen M. E. (2015). Maize yield response to a phosphorus-solubilizing microbial inoculant in field trials. J. Agric. Sci. 153, 1464–1478. doi: 10.1017/S0021859614001166
Lekfeldt J. D. S. Rex M. Mercl F. Kulhánek M. Tlustoš P. Magid J. et al. (2016). Effect of bioeffectors and recycled P-fertiliser products on the growth of spring wheat. Chem. Biol. Technol. Agric. 3, 22. doi: 10.1186/s40538-016-0074-4
Li M. Cozzolino V. Mazzei P. Drosos M. Monda H. Hu Z. et al. (2018). Effects of microbial bioeffectors and P amendements on P forms in a maize cropped soil as evaluated by 31P–NMR spectroscopy. Plant Soil 427, 87–104. doi: 10.1007/s11104-017-3405-8
Li J. van Gerrewey T. Geelen D. (2022). A meta-analysis of biostimulant yield effectiveness in field trials. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.836702
Lori M. Symnaczik S. Mäder P. de D. G. Gattinger A. (2017). Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PloS One 12, e0180442. doi: 10.1371/journal.pone.0180442
Mäder P. Kaiser F. Adholeya A. Singh R. Uppal H. S. Sharma A. K. et al. (2011). Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol. Biochem. 43, 609–619. doi: 10.1016/j.soilbio.2010.11.031
Marasco R. Rolli E. Vigani G. Borin S. Sorlini C. Ouzari H. et al. (2013). Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav. 8, e26741. doi: 10.4161/psb.26741
Megali L. Schlau B. Rasmann S. (2015). Soil microbial inoculation increases corn yield and insect attack. Agron. Sustain. Dev. 35, 1511–1519. doi: 10.1007/s13593-015-0323-0
Möller K. Oberson A. Bünemann E. K. Cooper J. Friedel J. K. Glæsner N. et al. (2018). Chapter four - improved phosphorus recycling in organic farming: navigating between constraints. Adv. Agron. 147, 159–237. doi: 10.1016/bs.agron.2017.10.004
Moradtalab N. Ahmed A. Geistlinger J. Walker F. Höglinger B. Ludewig U. et al. (2020). Synergisms of microbial consortia and micronutrients alleviate oxidative damage and stimulate hormonal cold stress adaptations in maize. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00396
Mpanga I. K. Dapaah H. K. Geistlinger J. Ludewig U. Neumann G. (2018). Soil type-dependent interactions of P-solubilizing microorganisms with organic and inorganic fertilizers mediate plant growth promotion in tomato. Agronomy 8, 213. doi: 10.3390/agronomy8100213
Mpanga I. K. Gomez-Genao N. Moradtalab N. Wanke D. Chrobaczek V. Ahmed A. et al. (2019a). The role of N form supply for PGPM-host plant interactions in maize. J. Plant Nutr. Soil Sci. 182, 908–920. doi: 10.1002/jpln.201900133
Mpanga I. K. Ludewig U. Dapaah H. K. Neumann G. (2020). Acquisition of rock phosphate by combined application of ammonium fertilizers and Bacillus amyloliquefaciens FZB42 in maize as affected by soil pH. J. Appl. Microbiol. 129, 947–957. doi: 10.1111/jam.14654
Mpanga I. K. Nkebiwe P. M. Kuhlmann M. Cozzolino V. Piccolo A. Geistlinger J. et al. (2019b). The form of N supply determines plant growth promotion by P-solubilizing microorganisms in maize. Microorganisms 7, 38. doi: 10.3390/microorganisms7020038
Nkebiwe P. M. Neumann G. Müller T. (2017). Densely rooted rhizosphere hotspots induced around subsurface NH4+-fertilizer depots: a home for soil PGPMs? Chem. Biol. Technol. Agric. 4, 29. doi: 10.1186/s40538-017-0111-y
Nkebiwe P. M. Weinmann M. Bar-Tal A. Müller T. (2016a). Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 196, 389–401. doi: 10.1016/j.fcr.2016.07.018
Nkebiwe P. M. Weinmann M. Müller T. (2016b). Improving fertilizer-depot exploitation and maize growth by inoculation with plant growth-promoting bacteria: from lab to field. Chem. Biol. Technol. Agric. 3, 15. doi: 10.1186/s40538-016-0065-5
Olkin I. Gleser L. J. (2009). “Stochastically dependent effect sizes,” in The handbook of research synthesis and meta-analysis, vol. p. Eds. Cooper H. Hedges L. V. Valentine J. C. (New York: Russell Sage Foundation), 357–376.
Olsen S. Cole C. Watanabe F. Dean L. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circ. U S Dep. Agric. 939, 1–18.
Omar S. A. (1997). The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 14, 211–218. doi: 10.1023/A:1008830129262
Paul E. A. (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126. doi: 10.1016/j.soilbio.2016.04.001
Raymond N. S. Gómez-Muñoz B. van der Bom F. J. T. Nybroe O. Jensen L. S. Müller-Stöver D. S. et al. (2021). Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytol. 229, 1268–1277. doi: 10.1111/nph.16924
Redel Y. D. Nkebiwe P. M. Schulz R. Müller T. (2019). Phosphate amendments to compost for improving P bio-availability. Compost Sci. Util. 27, 88–96. doi: 10.1080/1065657X.2019.1571461
Rho H. Hsieh M. Kandel S. L. Cantillo J. Doty S. L. Kim S.-H. (2018). Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb. Ecol. 75, 407–418. doi: 10.1007/s00248-017-1054-3
Richardson A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28, 897–906. doi: 10.1071/PP01093
Richardson A. E. Lynch J. P. Ryan P. R. Delhaize E. Smith F. A. Smith S. E. et al. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349, 121–156. doi: 10.1007/s11104-011-0950-4
Richardson A. E. Simpson R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156, 989. doi: 10.1104/pp.111.175448
Rose M. T. Patti A. F. Little K. R. Brown A. L. Jackson W. R. Cavagnaro T. R. (2014). Chapter two - A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv. Agron., 37–89. doi: 10.1016/B978-0-12-800138-7.00002-4
Rosenberg M. S. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468. doi: 10.1111/j.0014-3820.2005.tb01004.x
Rousk J. Brookes P. C. Bååth E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 75, 1589. doi: 10.1128/AEM.02775-08
Rubin R. L. van Groenigen K. J. Hungate B. A. (2017). Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 416, 309–323. doi: 10.1007/s11104-017-3199-8
Sánchez-Esteva S. Gómez-Muñoz B. Jensen L. S. de N. A. Magid J. (2016). The effect of Penicillium bilaii on wheat growth and phosphorus uptake as affected by soil pH, soil P and application of sewage sludge. Chem. Biol. Technol. Agric. 3, 21. doi: 10.1186/s40538-016-0075-3
Sani M. N. Yong J. W. H. (2022). Harnessing synergistic biostimulatory processes: A plausible approach for enhanced crop growth and resilience in organic farming. Biology 11, 41. doi: 10.3390/biology11010041
Schmidt J. E. Gaudin A. C. M. (2018). What is the agronomic potential of biofertilizers for maize? A meta-analysis. FEMS Microbiol. Ecol. 94, 1–10. doi: 10.1093/femsec/fiy094
Schütz L. Gattinger A. Meier M. Müller A. Boller T. Mäder P. et al. (2018). Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.02204
Singh A. Jain A. Sarma B. K. Upadhyay R. S. Singh H. B. (2014). Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol. Res. 169, 353–360. doi: 10.1016/j.micres.2013.09.014
Sissingh H. A. (1971). Analytical technique of the Pw method, used for the assessment of the phosphate status of arable soils in the Netherlands. Plant Soil 34, 483–486. doi: 10.1007/BF01372800
Skinner C. Gattinger A. Muller A. Mäder P. Stolze M. Ruser R. et al. (2014). Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis. Sci. Total Environ. 468, 553–563. doi: 10.1016/j.scitotenv.2013.08.098
Stamford N. P. Santos P. R. Santos C. Freitas A. Dias S. Lira M. A. (2007). Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Bioresour. Technol. 98, 1311–1318. doi: 10.1016/j.biortech.2006.04.037
Steffen W. Richardson K. Rockström J. Cornell S. E. Fetzer I. Bennett E. M. et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855. doi: 10.1126/science.1259855
Thoms D. Liang Y. Haney C. H. (2021). Maintaining symbiotic homeostasis: how do plants engage with beneficial microorganisms while at the same time restricting pathogens? Mol. Plant-Microbe Interact. 34, 462–469. doi: 10.1094/MPMI-11-20-0318-FI
Thonar C. Lekfeldt J. D. S. Cozzolino V. Kundel D. Kulhánek M. Mosimann C. et al. (2017). Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chem. Biol. Technol. Agric. 4, 7. doi: 10.1186/s40538-017-0088-6
Tilman D. Cassman K. G. Matson P. A. Naylor R. Polasky S. (2002). Agricultural sustainability and intensive production practices. Nature 418, 671–677. doi: 10.1038/nature01014
Timmusk S. Abd El-Daim I. A. Copolovici L. Tanilas T. Kännaste A. Behers L. et al. (2014). Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloS One 9, e96086. doi: 10.1371/journal.pone.0096086
Vacheron J. Desbrosses G. Bouffaud M.-L. Touraine B. Moënne-Loccoz Y. Muller D. et al. (2013). Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4. doi: 10.3389/fpls.2013.00356
Valente J. Gerin F. Le Gouis J. Moënne-Loccoz Y. Prigent–Combaret C. (2020). Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria. Plant Cell Environ. 43, 246–260. doi: 10.1111/pce.13652
van de Wiel C. C. M. van der Linden C. G. Scholten O. E. (2016). Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207, 1–22. doi: 10.1007/s10681-015-1572-3
van Oosten M. J. Pepe O. de P. S. Silletti S. Maggio A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4, 5. doi: 10.1186/s40538-017-0089-5
Vdlufa-Methodenbuch V. (1991). Band 1.: die untersuchung von böden. Darmstadt, Germany: VDLUFAverlag.
Veresoglou S. D. Menexes G. (2010). Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil 337, 469–480. doi: 10.1007/s11104-010-0543-7
Viechtbauer W. (2010). Conducting meta-analyses in R with the metafor package. J. Stat. Software 36, 1–48. doi: 10.18637/jss.v036.i03
Vinci G. Cozzolino V. Mazzei P. Monda H. Savy D. Drosos M. et al. (2018a). Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 429, 437–450. doi: 10.1007/s11104-018-3701-y
Vinci G. Cozzolino V. Mazzei P. Monda H. Spaccini R. Piccolo A. (2018b). An alternative to mineral phosphorus fertilizers: The combined effects of Trichoderma harzianum and compost on Zea mays, as revealed by 1H NMR and GC-MS metabolomics. PloS One 13, e0209664. doi: 10.1371/journal.pone.0209664
Weber N. F. Herrmann I. Hochholdinger F. Ludewig U. Neumann G. (2018). PGPR-induced growth stimulation and nutrient acquisition in maize: do root hairs matter. Sci. Agric. Bohem. 49, 164–172. doi: 10.2478/sab-2018-0022
Weinmann M. (2017). Bio-effectors for improved growth, nutrient acquisition and disease resistance of crops (Stuttgart, Germany: University of Hohenheim).
Windisch S. Sommermann L. Babin D. Chowdhury S. P. Grosch R. Moradtalab N. et al. (2021). Impact of long-term organic and mineral fertilization on rhizosphere metabolites, root–microbial interactions and plant health of lettuce. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.597745
Withers P. J. A. van Dijk K. C. Neset T.-S. S. Nesme T. Oenema O. Rubæk G. H. et al. (2015). Stewardship to tackle global phosphorus inefficiency: The case of Europe. AMBIO 44, 193–206. doi: 10.1007/s13280-014-0614-8
Yakhin O. I. Lubyanov A. A. Yakhin I. A. Brown P. H. (2017). Biostimulants in plant science: A global perspective. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.02049
You Y. Klein J. Hartmann T. E. Nkebiwe P. M. Yang H. Zhang W. et al. (2021). Producing superphosphate with sewage sludge ash: assessment of phosphorus availability and potential toxic element contamination. Agronomy 11, 1506. doi: 10.3390/agronomy11081506
Yu W. Li H. Nkebiwe P. M. Li G. Müller T. Zhang J. et al. (2021). Estimation of the P fertilizer demand of China using the LePA model. Front. Environ. Sci. 9, 492. doi: 10.3389/fenvs.2021.759984
Zou X. Binkley D. Doxtader K. G. (1992). A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147, 243–250. doi: 10.1007/BF00029076