Biomass valorization; Chitin; Ionic liquids; Green Chemistry Technology/methods
Abstract :
[en] A green protocol to extract chitin from crab shells using water soluble ionic liquids (ILs) is here reported. Compared to conventional multistep acid-base extraction methods, this one-pot procedure achieves pulping of recalcitrant crustacean waste shells by employing ammonium acetate, ammonium formate and hydroxylammonium acetate as water-soluble, low-cost and easy to prepare ILs. An extensive parametric analysis of the pulping process has been carried out with different ILs, different ratios, temperature and time. The optimized protocol provides a high-quality chitin comparable, if not better, to commercial chitin. The best results were obtained at 150 °C with ammonium formate prepared in-situ from aqueous ammonia and formic acid: chitin was isolated in a 17 wt% yield (based on dried crab shells as starting biowaste), a degree of acetylation (DA) > 94 %, a crystallinity index of 39-46 %, a molecular weight up to 6.6 × 105 g/mol and a polydispersity of ca 2.0.
Disciplines :
Chemistry
Author, co-author :
Campalani, Carlotta ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Integrated Technology and Organic Synthesis ; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, 30172 Venezia Mestre, Italy
Bertuol, Ilaria; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, 30172 Venezia Mestre, Italy
Bersani, Chiara; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, 30172 Venezia Mestre, Italy
Calmanti, Roberto; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, 30172 Venezia Mestre, Italy, Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany
Filonenko, Svitlana; Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany
Rodríguez-Padrón, Daily; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, 30172 Venezia Mestre, Italy
Selva, Maurizio; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, 30172 Venezia Mestre, Italy. Electronic address: selva@unive.it
Perosa, Alvise; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, 30172 Venezia Mestre, Italy. Electronic address: alvise@unive.it
Language :
English
Title :
Green extraction of chitin from hard spider crab shells.
The following are gratefully acknowledged for funding: European Union's Horizon 2020 Marie Sklodowska-Curie Cofund Grant Agreement no. 945361: Cariverona project \u201CValorizzazione di scarti agroalimentari per nuovi cosmetici green\u201D ID n\u00B0 11174 - Cod. SIME n\u00B0 2019.0428; Fondazione Cariplo (Photo and Mechano-Chemistry for the Upgrading of Agro- and Sea-food Waste to advanced polymers and nanocarbon materials, CUBWAM, project 2021-0751). The authors warmly thank Dr. Marlies Graewert for providing the GPC measurements and Dr. Heike Runge for the SEM tests. SF is gratefully acknowledge the Max Planck Society for financial support.
Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., Heras, A., Functional characterization of chitin and chitosan. Current Chemical Biology 3:2 (2012), 203–230, 10.2174/2212796810903020203.
Bastiaens, L., Soetemans, L., D'Hondt, E., Elst, K., Sources of chitin and chitosan and their isolation. Chitin and Chitosan: Properties and Applications, 2019, 1–34, 10.1002/9781119450467.ch1.
Bisht, M., Macário, I.P.E., Neves, M.C., Pereira, J.L., Pandey, S., Rogers, R.D., Ventura, S.P.M., Enhanced dissolution of chitin using acidic deep eutectic solvents: A sustainable and simple approach to extract chitin from crayfish shell wastes as alternative feedstocks. ACS Sustainable Chemistry and Engineering 9:48 (2021), 16073–16081, 10.1021/acssuschemeng.1c04255.
Bozell, J.J., Petersen, G.R., Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “top 10” revisited. Green Chemistry 12:4 (2010), 539–555, 10.1039/b922014c.
Cárdenas, G., Cabrera, G., Taboada, E., Miranda, S.P., Chitin characterization by SEM, FTIR, XRD, and13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science 93:4 (2004), 1876–1885, 10.1002/app.20647.
Cauchie, H.M., Chitin production by arthropods in the hydrosphere. Hydrobiologia 470 (2002), 63–95, 10.1023/A:1015615819301.
Chandran, R., Williams, L., Hung, A., Nowlin, K., LaJeunesse, D., SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 82 (2016), 74–85, 10.1016/j.micron.2015.12.010.
Chen, X., Chew, S.L., Kerton, F.M., Yan, N., Direct conversion of chitin into a N-containing furan derivative. Green Chemistry 16:4 (2014), 2204–2212, 10.1039/c3gc42436g.
Cho, Y.W., Jang, J., Park, C.R., Ko, S.W., Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules 1:4 (2000), 609–614, 10.1021/bm000036j.
Dahmane, E.M., Taourirte, M., Eladlani, N., Rhazi, M., Extraction and characterization of chitin and chitosan from parapenaeus longirostris from moroccan local sources. International Journal of Polymer Analysis and Characterization 19:4 (2014), 342–351, 10.1080/1023666X.2014.902577.
Daraghmeh, N.H., Chowdhry, B.Z., Leharne, S.A., Al Omari, M.M., Badwan, A.A., Chitin. Profiles of Drug Substances, Excipients and Related Methodology, Vol. 36, 2011, Academic Press Inc., 35–102, 10.1016/B978-0-12-387667-6.00002-6.
Einbu, A., Vårum, K.M., Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromolecules 9:7 (2008), 1870–1875, 10.1021/bm8001123.
Feng, M., Sun, J., Zhang, S. (eds)., Pretreatment and conversion of shrimp/crab shells into high-value products with ionic liquids. Zang, S., (eds.) Encyclopedia of Ionic Liquids. (pp. 1–14), 2020, Springer, 10.1007/978-981-10-6739-6_112-1.
Greaves, T.L., Drummond, C.J., Protic ionic liquids: Properties and applications. Chemical Reviews 108:1 (2008), 206–237, 10.1021/cr068040u.
Hong, S., Yuan, Y., Yang, Q., Zhu, P., Lian, H., Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydrate Polymers 201:August (2018), 211–217, 10.1016/j.carbpol.2018.08.059.
Hudson, R., de Graaf, R., Rodin, M.S., Ohno, A., Lane, N., McGlynn, S.E., Sojo, V., CO2 reduction driven by a pH gradient. Proceedings of the National Academy of Sciences of the United States of America 117:37 (2020), 22873–22879, 10.1073/pnas.2002659117.
Ioelovich, M., Research and reviews: Journal of chemistry crystallinity and hydrophility of chitin and chitosan. Research and Reviews: Journal of Chemistry 3:3 (2014), 7–14.
Jaekel, E.E., Sirviö, J.A., Antonietti, M., Filonenko, S., One-step method for the preparation of cationic nanocellulose in reactive eutectic media. Green Chemistry 23:6 (2021), 2317–2323, 10.1039/d0gc04282j.
Kalb, R.S., Toward Industrialization of Ionic Liquids. 2020, 10.1007/978-3-030-35245-5_11.
Kaur, S., Dhillon, G.S., Recent trends in biological extraction of chitin from marine shell wastes: a review., 8551, 2013, 1–18, 10.3109/07388551.2013.798256.
Kaya, M., Seyyar, O., Baran, T., Erdoǧan, S., Kar, M., A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: With new surface morphology. International Journal of Biological Macromolecules 65 (2014), 553–558, 10.1016/j.ijbiomac.2014.02.010.
Kerton, F.M., Liu, Y., Omari, K.W., Hawboldt, K., Green chemistry and the ocean-based biorefinery. Green Chemistry 15:4 (2013), 860–871, 10.1039/c3gc36994c.
Li, J., Revol, J.F., Marchessault, R.H., Effect of degree of deacetylation of chitin on the properties of chitin crystallites. Journal of Applied Polymer Science 65:2 (1997), 373–380, 10.1002/(sici)1097-4628(19970711)65:2<373::aid-app18>3.3.co;2-n.
Maschmeyer, T., Luque, R., Selva, M., Chemical Society Reviews, 2020, 4527–4563, 10.1039/c9cs00653b.
McElroy, C.R., Constantinou, A., Jones, L.C., Summerton, L., Clark, J.H., Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chemistry 17:5 (2015), 3111–3121, 10.1039/c5gc00340g.
Pap, S., Kirk, C., Bremner, B., Turk Sekulic, M., Gibb, S.W., Maletic, S., Taggart, M.A., Synthesis optimisation and characterisation of chitosan-calcite adsorbent from fishery-food waste for phosphorus removal. Environmental Science and Pollution Research 27:9 (2020), 9790–9802, 10.1007/s11356-019-07570-0.
Peniche, C., Argüelles-Monal, W., Goycoolea, F.M., Chitin and chitosan: Major sources, properties and applications. Belgacem, M.N., Gandini, A., (eds.) Monomers, Polymers and Composites from Renewable Resources (First Edit, pp. 517–542), 2008, Elsevier, 10.1016/B978-0-08-045316-3.00025-9.
Percot, A., Viton, C., & Domard, A. (2003). Optimization of chitin extraction from shrimp shells. 12–18.
Pires, C., Marques, A., Carvalho, M., Batista, I., Chemical Characterization of Cancer Pagurus, Maja Squinado, Necora Puber and Carcinus Maenas Shells. Poultry, Fisheries & Wildlife Sciences 05:01 (2017), 1–6, 10.4172/2375-446x.1000181.
Qin, Y., Lu, X., Sun, N., Rogers, R.D., Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry 12:6 (2010), 968–997, 10.1039/c003583a.
Sagheer, F., Al, A., Al-sughayer, M.A., Muslim, S., Elsabee, M.Z., Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers 77:2 (2009), 410–419, 10.1016/j.carbpol.2009.01.032.
Schiffer, Z.J., Biswas, S., Manthiram, K., Ammonium formate as a safe, energy-dense electrochemical fuel ionic liquid. ACS Energy Letters 7:10 (2022), 3260–3267, 10.1021/acsenergylett.2c01826.
Setoguchi, T., Kato, T., Yamamoto, K., Kadokawa, J., Facile production of chitin from crab shells using ionic liquid and citric acid. International Journal of Biological Macromolecules 50:3 (2012), 861–864, 10.1016/j.ijbiomac.2011.11.007.
Shamshina, J.L., Barber, P.S., Gurau, G., Griggs, C.S., Rogers, R.D., Pulping of crustacean waste using ionic liquids: To extract or not to extract. ACS Sustainable Chemistry and Engineering 4:11 (2016), 6072–6081, 10.1021/acssuschemeng.6b01434.
Shamshina, J.L., Chitin in ionic liquids: Historical insights into the polymer's dissolution and isolation. A review. Green Chemistry 21:15 (2019), 3974–3993, 10.1039/c9gc01830a.
Shamshina, J.L., Abidi, N., Isolation of chitin nano-whiskers directly from crustacean biomass waste in a single step with acidic ionic liquids. ACS Sustainable Chemistry and Engineering 10:36 (2022), 11846–11855, 10.1021/acssuschemeng.2c02461.
Tolaimate, A., Desbrieres, J., Rhazi, M., Alagui, A., Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties., 44, 2003, 7939–7952, 10.1016/j.polymer.2003.10.025.
Vázquez, J.A., Rodríguez-Amado, I., Montemayor, M.I., Fraguas, J., Del González, M.P., Murado, M.A., Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Marine Drugs 11:3 (2013), 747–774, 10.3390/md11030747.
Verlee, A., Mincke, S., Stevens, C.V., Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers 164 (2017), 268–283, 10.1016/j.carbpol.2017.02.001.
Waśko, A., Bulak, P., Polak-Berecka, M., Nowak, K., Polakowski, C., Bieganowski, A., The first report of the physicochemical structure of chitin isolated from Hermetia illucens. International Journal of Biological Macromolecules 92 (2016), 316–320, 10.1016/j.ijbiomac.2016.07.038.
Yadav, M., Goswami, P., Paritosh, K., Kumar, M., Pareek, N., Vivekanand, V., Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresources and Bioprocessing, 6(1), 2019, 10.1186/s40643-019-0243-y.
Yuan, Y., Hong, S., Lian, H., Zhang, K., Liimatainen, H., Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydrate Polymers, 236(January), 2020, 116095, 10.1016/j.carbpol.2020.116095.
Zhu, K.Y., Merzendorfer, H., Zhang, W., Zhang, J., Muthukrishnan, S., Biosynthesis, Turnover, and Functions of Chitin in Insects, 2016, 177–198, 10.1146/annurev-ento-010715-023933.