[en] The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.
Disciplines :
Chemistry
Author, co-author :
Cailotto, Simone; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy ; CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
Massari, Daniele; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy ; CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
Gigli, Matteo ; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy ; CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
Campalani, Carlotta ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Integrated Technology and Organic Synthesis ; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
Bonini, Massimo ; CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy ; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
You, Shujie ; Division of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
Vomiero, Alberto; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy ; Division of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
Selva, Maurizio ; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
Perosa, Alvise ; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
Crestini, Claudia ; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy ; CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
Language :
English
Title :
N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment.
Università Ca' Foscari Venezia KAW - Knut and Alice Wallenberg Foundation
Funding text :
M.G. gratefully acknowledges Ca′ Foscari University FPI2019 grant. S.Y. and A.V. acknowledge the Kempe Foundation and the Knut & Alice Wallenberg Foundation for financial support.
Stahel, W. R. The Circular Economy. Nat. News 2016, 531, 435-438, 10.1038/531435a
Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Green Chemistry: Science and Politics of Change. Science 2002, 297, 807-810, 10.1126/science.297.5582.807
Sheldon, R. A. Green Chemistry, Catalysis and Valorization of Waste Biomass. J. Mol. Catal. A: Chem. 2016, 422, 3-12, 10.1016/j.molcata.2016.01.013
Briens, C.; Piskorz, J.; Berruti, F. Biomass Valorization for Fuel and Chemicals Production-A Review. Int. J. Chem. React. Eng. 2008, 6, 1674, 10.2202/1542-6580.1674
Liguori, R.; Amore, A.; Faraco, V. Waste Valorization by Biotechnological Conversion into Added Value Products. Appl. Microbiol. Biotechnol. 2013, 97, 6129-6147, 10.1007/s00253-013-5014-7
Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of Brewery Wastes in Food Industry. PeerJ 2020, 8, e9427 10.7717/peerj.9427
Outeiriño, D.; Costa-Trigo, I.; Paz, A.; Deive, F. J.; Rodríguez, A.; Domínguez, J. M. Biorefining Brewery Spent Grain Polysaccharides through Biotuning of Ionic Liquids. Carbohydr. Polym. 2019, 203, 265-274, 10.1016/j.carbpol.2018.09.042
Pérez-Torrado, R.; Gamero, E.; Gómez-Pastor, R.; Garre, E.; Aranda, A.; Matallana, E. Yeast Biomass, an Optimised Product with Myriad Applications in the Food Industry. Trends Food Sci. Technol. 2015, 46, 167-175, 10.1016/j.tifs.2015.10.008
dos Mathias, T. R. S.; Alexandre, V. M. F.; Cammarota, M. C.; de Mello, P. P. M.; Sérvulo, E. F. C. Characterization and Determination of Brewer's Solid Wastes Composition. J. Inst. Brew. 2015, 121, 400-404, 10.1002/jib.229
Ferreira, I. M. P. L. V. O.; Pinho, O.; Vieira, E.; Tavarela, J. G. Brewer's Saccharomyces Yeast Biomass: Characteristics and Potential Applications. Trends Food Sci. Technol. 2010, 21, 77-84, 10.1016/j.tifs.2009.10.008
Jacob, F. F.; Striegel, L.; Rychlik, M.; Hutzler, M.; Methner, F.-J. Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production. Fermentation 2019, 5, 51, 10.3390/fermentation5020051
Pacheco, M. T. B.; Caballero-Córdoba, G. M.; Sgarbieri, V. C. Composition and Nutritive Value of Yeast Biomass and Yeast Protein Concentrates. J. Nutr. Sci. Vitaminol. 1997, 43, 601-612, 10.3177/jnsv.43.601
Mussatto, S. I.; Dragone, G.; Roberto, I. C. Brewers' Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1-14, 10.1016/j.jcs.2005.06.001
Puligundla, P.; Mok, C.; Park, S. Advances in the Valorization of Spent Brewer's Yeast. Innovative Food Sci. Emerging Technol. 2020, 62, 102350 10.1016/j.ifset.2020.102350
Dabaro, M. D.; Demsash, H. D. Valorization of Agro-Industrial Waste into Bioethanol: A Case of Brewers Spent Grain. Int. J. Renew. Energy Commer. 2020, 6, 1-20
Comelli, R. N.; Seluy, L. G.; Benzzo, M. T.; Isla, M. A. Combined Utilization of Agro-Industrial Wastewaters for Non-Lignocellulosic Second-Generation Bioethanol Production. Waste Biomass Valorization 2020, 11, 265-275, 10.1007/s12649-018-0391-x
Radosavljević, M.; Pejin, J.; Pribić, M.; Kocić-Tanackov, S.; Romanić, R.; Mladenović, D.; Djukić-Vuković, A.; Mojović, L. Utilization of Brewing and Malting By-Products as Carrier and Raw Materials in l-(+)-Lactic Acid Production and Feed Application. Appl. Microbiol. Biotechnol. 2019, 103, 3001-3013, 10.1007/s00253-019-09683-5
Radosavljević, M.; Pejin, J.; Pribić, M.; Kocić-Tanackov, S.; Mladenović, D.; Djukić-Vuković, A.; Mojović, L. Brewing and Malting Technology By-Products as Raw Materials in l-(+)-Lactic Acid Fermentation. J. Chem. Technol. Biotechnol. 2020, 95, 339-347, 10.1002/jctb.5878
Chen, K.-Q.; Li, J.; Ma, J.-F.; Jiang, M.; Wei, P.; Liu, Z.-M.; Ying, H.-J. Succinic Acid Production by Actinobacillus Succinogenes Using Hydrolysates of Spent Yeast Cells and Corn Fiber. Bioresour. Technol. 2011, 102, 1704-1708, 10.1016/j.biortech.2010.08.011
Mohamad Ansor, N.; Abdullah, N.; Aminudin, N. Anti-Angiotensin Converting Enzyme (ACE) Proteins from Mycelia of Ganoderma Lucidum (Curtis) P. Karst. BMC Complementary Altern. Med. 2013, 13, 256, 10.1186/1472-6882-13-256
Low, K.-S.; Lee, C. K.; Low, C. H. Sorption of Chromium (VI) by Spent Grain under Batch Conditions. J. Appl. Polym. Sci. 2001, 82, 2128-2134, 10.1002/app.2058
Li, Q.; Chai, L.; Qin, W. Cadmium(II) Adsorption on Esterified Spent Grain: Equilibrium Modeling and Possible Mechanisms. Chem. Eng. J. 2012, 197, 173-180, 10.1016/j.cej.2012.04.102
Low, K. S.; Lee, C. K.; Liew, S. C. Sorption of Cadmium and Lead from Aqueous Solutions by Spent Grain. Process Biochem. 2000, 36, 59-64, 10.1016/S0032-9592(00)00177-1
de Castro, K. C.; Cossolin, A. S.; dos Reis, H. C. O.; de Morais, E. B.; de Castro, K. C.; Cossolin, A. S.; dos Reis, H. C. O.; de Morais, E. B. Biosorption of Anionic Textile Dyes from Aqueous Solution by Yeast Slurry from Brewery. Braz. Arch. Biol. Technol. 2017, 60, e17160101 10.1590/1678-4324-2017160101
Kim, T.-Y.; Lee, J.-W.; Cho, S.-Y. Application of Residual Brewery Yeast for Adsorption Removal of Reactive Orange 16 from Aqueous Solution. Adv. Powder Technol. 2015, 26, 267-274, 10.1016/j.apt.2014.10.006
Robertson, J. A.; I'Anson, K. J. A.; Treimo, J.; Faulds, C. B.; Brocklehurst, T. F.; Eijsink, V. G. H.; Waldron, K. W. Profiling Brewers' Spent Grain for Composition and Microbial Ecology at the Site of Production. LWT-Food Sci. Technol. 2010, 43, 890-896, 10.1016/j.lwt.2010.01.019
Tuerhong, M.; Xu, Y.; Yin, X.-B. Review on Carbon Dots and Their Applications. Chin. J. Anal. Chem. 2017, 45, 139-150, 10.1016/S1872-2040(16)60990-8
Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon Dots: Synthesis, Formation Mechanism, Fluorescence Origin and Sensing Applications. Green Chem. 2019, 21, 449-471, 10.1039/C8GC02736F
Xiao, L.; Sun, H. Novel Properties and Applications of Carbon Nanodots. Nanoscale Horiz. 2018, 3, 565-597, 10.1039/C8NH00106E
Mishra, V.; Patil, A.; Thakur, S.; Kesharwani, P. Carbon Dots: Emerging Theranostic Nanoarchitectures. Drug Discovery Today 2018, 23, 1219-1232, 10.1016/j.drudis.2018.01.006
Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The Fluorescence Mechanism of Carbon Dots, and Methods for Tuning Their Emission Color: A Review. Microchim. Acta 2019, 186, 583, 10.1007/s00604-019-3688-y
Kang, C.; Huang, Y.; Yang, H.; Yan, X. F.; Chen, Z. P. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020, 10, 2316, 10.3390/nano10112316
Meng, W.; Bai, X.; Wang, B.; Liu, Z.; Lu, S.; Yang, B. Biomass-Derived Carbon Dots and Their Applications. Energy Environ. Mater. 2019, 2, 172-192, 10.1002/eem2.12038
Campalani, C.; Cattaruzza, E.; Zorzi, S.; Vomiero, A.; You, S.; Matthews, L.; Capron, M.; Mondelli, C.; Selva, M.; Perosa, A. Biobased Carbon Dots: From Fish Scales to Photocatalysis. Nanomaterials 2021, 11, 524, 10.3390/nano11020524
Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 2013, 7, 1239-1245, 10.1021/nn304675g
Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; Yu, W.; Wang, X.; Sun, H.; Yang, B. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012, 22, 4732-4740, 10.1002/adfm.201201499
Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from Chemical Structure to Photoluminescent Mechanism: A Type of Carbon Dots from the Pyrolysis of Citric Acid and an Amine. J. Mater. Chem. C 2015, 3, 5976-5984, 10.1039/C5TC00813A
Xiong, Y.; Schneider, J.; Ushakova, E. V.; Rogach, A. L. Influence of Molecular Fluorophores on the Research Field of Chemically Synthesized Carbon Dots. Nano Today 2018, 23, 124-139, 10.1016/j.nantod.2018.10.010
Qu, D.; Sun, Z. The Formation Mechanism and Fluorophores of Carbon Dots Synthesized via a Bottom-up Route. Mater. Chem. Front. 2020, 4, 400-420, 10.1039/C9QM00552H
Essner, J. B.; Kist, J. A.; Polo-Parada, L.; Baker, G. A. Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. Chem. Mater. 2018, 30, 1878-1887, 10.1021/acs.chemmater.7b04446
Shi, L.; Hai Yang, J.; Bo Zeng, H.; Mei Chen, Y.; Chun Yang, S.; Wu, C.; Zeng, H.; Yoshihito, O.; Zhang, Q. Carbon Dots with High Fluorescence Quantum Yield: The Fluorescence Originates from Organic Fluorophores. Nanoscale 2016, 8, 14374-14378, 10.1039/C6NR00451B
Schneider, J.; Reckmeier, C. J.; Xiong, Y.; von Seckendorff, M.; Susha, A. S.; Kasák, P.; Rogach, A. L. Molecular Fluorescence in Citric Acid-Based Carbon Dots. J. Phys. Chem. C 2017, 121, 2014-2022, 10.1021/acs.jpcc.6b12519
Mintz, K. J.; Zhou, Y.; Leblanc, R. M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 2019, 11, 4634-4652, 10.1039/c8nr10059d
Wang, C.; Strauss, V.; Kaner, R. B. Carbon Nanodots for Capacitor Electrodes. Trends Chem. 2019, 1, 858-868, 10.1016/j.trechm.2019.05.009
Pirsaheb, M.; Mohammadi, S.; Salimi, A. Current Advances of Carbon Dots Based Biosensors for Tumor Marker Detection, Cancer Cells Analysis and Bioimaging. TrAC, Trends Anal. Chem. 2019, 115, 83-99, 10.1016/j.trac.2019.04.003
Gao, N.; Huang, L.; Li, T.; Song, J.; Hu, H.; Liu, Y.; Ramakrishna, S. Application of Carbon Dots in Dye-Sensitized Solar Cells: A Review. J. Appl. Polym. Sci. 2020, 137, 48443, 10.1002/app.48443
Zhao, H.; Liu, G.; You, S.; Camargo, F. V. A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; Vomiero, A.; Gong, X. Gram-Scale Synthesis of Carbon Quantum Dots with a Large Stokes Shift for the Fabrication of Eco-Friendly and High-Efficiency Luminescent Solar Concentrators. Energy Environ. Sci. 2021, 14, 396-406, 10.1039/D0EE02235G
Cailotto, S.; Amadio, E.; Facchin, M.; Selva, M.; Pontoglio, E.; Rizzolio, F.; Riello, P.; Toffoli, G.; Benedetti, A.; Perosa, A. Carbon Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity, and Drug Uptake. ACS Med. Chem. Lett. 2018, 9, 832-837, 10.1021/acsmedchemlett.8b00240
Cailotto, S.; Mazzaro, R.; Enrichi, F.; Vomiero, A.; Selva, M.; Cattaruzza, E.; Cristofori, D.; Amadio, E.; Perosa, A. Design of Carbon Dots for Metal-Free Photoredox Catalysis. ACS Appl. Mater. Interfaces 2018, 10, 40560-40567, 10.1021/acsami.8b14188
Cailotto, S.; Negrato, M.; Daniele, S.; Luque, R.; Selva, M.; Amadio, E.; Perosa, A. Carbon Dots as Photocatalysts for Organic Synthesis: Metal-Free Methylene-Oxygen-Bond Photocleavage. Green Chem. 2020, 22, 1145-1149, 10.1039/C9GC03811F
Achilleos, D. S.; Yang, W.; Kasap, H.; Savateev, A.; Markushyna, Y.; Durrant, J. R.; Reisner, E. Solar Reforming of Biomass with Homogeneous Carbon Dots. Angew. Chem., Int. Ed. 2020, 132, 18341-18345, 10.1002/ange.202008217
Bhati, A.; Anand, S. R.; Gunture; Garg, A. K.; Khare, P.; Sonkar, S. K. Sunlight-Induced Photocatalytic Degradation of Pollutant Dye by Highly Fluorescent Red-Emitting Mg-N-Embedded Carbon Dots. ACS Sustainable Chem. Eng. 2018, 6, 9246-9256, 10.1021/acssuschemeng.8b01559
Hutton, M. G. A.; Martindale, B. C. M.; Reisner, E. Carbon Dots as Photosensitisers for Solar-Driven Catalysis. Chem. Soc. Rev. 2017, 46, 6111-6123, 10.1039/C7CS00235A
Zheng, C.; An, X.; Yin, T. New Metal-Free Catalytic Degradation Systems with Carbon Dots for Thymol Blue. New J. Chem. 2017, 41, 13365-13369, 10.1039/C7NJ02642K
Rodrigues, C. V.; Correa, J. R.; Aiube, C. M.; Andrade, L. P.; Galvão, P. M.; Costa, P. A.; Campos, A. L.; Pereira, A. J.; Ghesti, G. F.; Felix, J. F.; Weber, I. T.; Neto, B. A.; Rodrigues, M. O. Down-and Up-Conversion Photoluminescence of Carbon-Dots from Brewing Industry Waste: Application in Live Cell-Imaging Experiments. J. Braz. Chem. Soc. 2015, 26, 2623-2628, 10.5935/0103-5053.20150291
Weiss, I. M.; Muth, C.; Drumm, R.; Kirchner, H. O. K. Thermal Decomposition of the Amino Acids Glycine, Cysteine, Aspartic Acid, Asparagine, Glutamic Acid, Glutamine, Arginine and Histidine. BMC Biophys. 2018, 11, 1-15, 10.1186/s13628-018-0042-4
Prasannan, A.; Imae, T. One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Ind. Eng. Chem. Res. 2013, 52, 15673-15678, 10.1021/ie402421s
Chen, C.-Y.; Tsai, Y.-H.; Chang, C.-W. Evaluation of the Dialysis Time Required for Carbon Dots by HPLC and the Properties of Carbon Dots after HPLC Fractionation. New J. Chem. 2019, 43, 6153-6159, 10.1039/C9NJ00434C
del Valle, J. C.; Catalán, J. Kasha's Rule: A Reappraisal. Phys. Chem. Chem. Phys. 2019, 21, 10061-10069, 10.1039/C9CP00739C
Liu, H.; Ding, L.; Chen, L.; Chen, Y.; Zhou, T.; Li, H.; Xu, Y.; Zhao, L.; Huang, N. A Facile, Green Synthesis of Biomass Carbon Dots Coupled with Molecularly Imprinted Polymers for Highly Selective Detection of Oxytetracycline. J. Ind. Eng. Chem. 2019, 69, 455-463, 10.1016/j.jiec.2018.10.007
Wei, J.; Zhang, X.; Sheng, Y.; Shen, J.; Huang, P.; Guo, S.; Pan, J.; Feng, B. Dual Functional Carbon Dots Derived from Cornflour via a Simple One-Pot Hydrothermal Route. Mater. Lett. 2014, 123, 107-111, 10.1016/j.matlet.2014.02.090
Berrios, M.; Martín, M. á.; Martín, A. Treatment of Pollutants in Wastewater: Adsorption of Methylene Blue onto Olive-Based Activated Carbon. J. Ind. Eng. Chem. 2012, 18, 780-784, 10.1016/j.jiec.2011.11.125
Rani, U. A.; Ng, L. Y.; Ng, C. Y.; Mahmoudi, E.; Ng, Y.-S.; Mohammad, A. W. Sustainable Production of Nitrogen-Doped Carbon Quantum Dots for Photocatalytic Degradation of Methylene Blue and Malachite Green. J. Water Process Eng. 2020, 40, 101816 10.1016/j.jwpe.2020.101816
Peng, Z.; Zhou, Y.; Ji, C.; Pardo, J.; Mintz, K. J.; Pandey, R. R.; Chusuei, C. C.; Graham, R. M.; Yan, G.; Leblanc, R. M. Facile Synthesis of "Boron-Doped" Carbon Dots and Their Application in Visible-Light-Driven Photocatalytic Degradation of Organic Dyes. Nanomaterials 2020, 10, 1560, 10.3390/nano10081560
Jusuf, B. N.; Sambudi, N. S.; Isnaeni; Samsuri, S. Microwave-Assisted Synthesis of Carbon Dots from Eggshell Membrane Ashes by Using Sodium Hydroxide and Their Usage for Degradation of Methylene Blue. J. Environ. Chem. Eng. 2018, 6, 7426-7433, 10.1016/j.jece.2018.10.032
Galagan, Y.; Su, W.-F. Reversible Photoreduction of Methylene Blue in Acrylate Media Containing Benzyl Dimethyl Ketal. J. Photochem. Photobiol. A 2008, 195, 378-383, 10.1016/j.jphotochem.2007.11.005
Younis, A.; Loucif, A. Defects mediated enhanced catalytic and humidity sensing performance in ceria nanorods. Ceram. Int. 2021, 47, 15500-15507, 10.1016/j.ceramint.2021.02.117
Sui, B.; Li, Y.; Yang, B. Nanocomposite hydrogels based on carbon dots and polymers. Chin. Chem. Lett. 2020, 31, 1443-1447, 10.1016/j.cclet.2019.08.023
Shao, J.; Yu, Q.; Wang, S.; Hu, Y.; Guo, Z.; Kang, K.; Ji, X. Poly(Vinyl Alcohol)-Carbon Nanodots Fluorescent Hydrogel with Superior Mechanical Properties and Sensitive to Detection of Iron(III) Ions. Macromol. Mater. Eng. 2019, 304, 1900326 10.1002/mame.201900326
Kwan, N. H. M.; Leo, C. P.; Arosa Senanayake, S. M. N.; Lim, G. K.; Tan, M. K. Carbon-Dot Dispersal in PVA Thin Film for Food Colorant Sensing. J. Environ. Chem. Eng. 2020, 8, 103187 10.1016/j.jece.2019.103187
El-Shamy, A. G.; Zayied, H. S. S. New Polyvinyl Alcohol/Carbon Quantum Dots (PVA/CQDs) Nanocomposite Films: Structural, Optical and Catalysis Properties. Synth. Met. 2020, 259, 116218 10.1016/j.synthmet.2019.116218
Nayak, S.; Prasad, S. R.; Mandal, D.; Das, P. Carbon Dot Cross-Linked Polyvinylpyrrolidone Hybrid Hydrogel for Simultaneous Dye Adsorption, Photodegradation and Bacterial Elimination from Waste Water. J. Hazard. Mater. 2020, 392, 122287 10.1016/j.jhazmat.2020.122287
Hu, M.; Gu, X.; Hu, Y.; Deng, Y.; Wang, C. PVA/Carbon Dot Nanocomposite Hydrogels for Simple Introduction of Ag Nanoparticles with Enhanced Antibacterial Activity. Macromol. Mater. Eng. 2016, 301, 1352-1362, 10.1002/mame.201600248
Singh, S.; Shauloff, N.; Jelinek, R. Solar-Enabled Water Remediation via Recyclable Carbon Dot/Hydrogel Composites. ACS Sustainable Chem. Eng. 2019, 7, 13186-13194, 10.1021/acssuschemeng.9b02342